
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/267689977

Backward Linkages without Forward Linkages: the Incipient Diffusion of ICT in the Brazilian Economy

Article

Some of the authors of this publication are also working on these related projects:

Project

Projeto do Livro Economia Industrial, fundamentos e práticas no Brasil, coordenado por David Kupfer e Lia Hasenclever. Primeira edição 200, segunda edição 2013 View project

Project

Matrizes Insumo-Produto Brasileiras, SCN 2010 View project

Backward Linkages without Forward Linkages: the Incipient Diffusion of ICT in the Brazilian Economy

Fabio Freitas, David Kupfer, Esther Dweck and Felipe Marques[#]

Towards the end of twentieth century, various works pointed out the important influence of ICT diffusion on the resurgence of GDP and productivity growth in the US economy. However, there are some doubts about the extent to which the US experience has been replicated by other countries, which has lead to a research agenda on the impact of ICT diffusion in various countries. The present work is a contribution to this agenda, aiming to evaluate the size and the structural characteristics of the ICT producing sectors in the Brazilian economy for the year 2003. Using an Input-Output methodology we found that there is an incipient ICT diffusion in the Brazilian economy. This is the case either in terms of the small shares of ICT producing sectors in total gross output, value added and employment, as well as, in the case of ICT shares in final demand components. In contrast, the share of ICT in total imports is significant, although the forward linkages of the ICT industries in Brazil are remarkably low when compared to the United States, and also to the average forward linkage in the Brazilian economy.

Ao final do século XX, vários artigos apontaram para a importante influência da difusão das TICs para a retomada do crescimento do PIB e da produtividade da economia norte-americana. Entretanto, há dúvidas sobre até que ponto as demais economias obtiveram a mesma trajetória dos EUA, o que levou a uma agenda de pesquisa voltada para avaliar o impacto da difusão das TICs nos demais países. O presente trabalho é uma contribuição a essa agenda ao procurar mensurar o tamanho e as características estruturais dos setores produtores de TICs na economia brasileira no ano de 2003. Utilizando uma metodologia de insumo-produto, foi constatado que há uma incipiente difusão das TICs na economia brasileira. Isto é evidenciado tanto pela pequena participação dos setores produtores de TICs tanto no total do valor da produção, do valor adicionado e do emprego como nos componentes de demanda final. Por outro lado, a parcela de TICS na importação total é significativa, muito embora os indicadores de encadeamento para frente sejam relativamente baixos tanto em comparação com os da economia dos EUA como quando comparados ao indicador médio de encadeamento para frente da economia brasileira.

[#] From Federal University of Rio de Janeiro, Institute of Economics.

1. INTRODUCTION

Information and communication technologies (ICT) are considered to be pervasive or general purpose technologies. Until the mid-1990s, however, the economic impact of ICT diffusion was generally considered to be small. This perspective underlies Solow's famous observation that "we see computers everywhere except in the statistics on productivity growth". Opinions began to change in the second half of the 1990s, and various works have since pointed out the important influence of ICT diffusion on the resurgence of GDP and productivity growth in the United States economy.¹

Some doubts remain about the generality of the positive effect of ICT on growth currently observed in United States economy. These doubts relate to the exact role that ICT can play in countries that don't show the same structural features of the United States economy. This questioning inspired the construction of a research agenda on the impact of ICT diffusion in various countries and regions of the world. The present work is a contribution to this agenda. It aims to analyse the impact of ICT diffusion on the Brazilian economy. We accomplish this by developing and applying an input-output (hereafter IO) methodology, which involved the following tasks:

- 1) Updating the last official IO matrix available (IBGE, 1996) with partial information from the Brazilian System of National Accounts (mainly from the 2003 make and use tables);
- 2) Disaggregating the IO matrix obtained in order to detach the ICT-producing sectors; and
- 3) the application of the disaggregated data set and the corresponding IO model to the analysis of the ICT producing industries.

The paper is organized as follows. The next section deals with the definition of the Brazilian ICT producing sector. In the third section the IO methodology applied in this work is presented and carried out. The results of the analysis of the ICT producing sector are discussed at the fourth section. The last section of the paper presents some brief concluding remarks.

2. DEFINING THE BRAZILIAN ICT PRODUCING INDUSTRIES

In order to identify the Brazilian ICT producing industries we have adopted the OECD definition of the ICT sector witch characterizes such a sector as "a combination of manufacturing and services industries that capture, transmit and display data and information electronically" (OECD, 2002, p. 81).² Although the last definition involves the combination of manufacturing and services industries, its practical implementation required separate examination of the two kinds of ICT industries.

2.1. ICT MANUFACTURING INDUSTRIES

According to OECD (ibid., p. 81), to be classified as an ICT manufacturing industry the goods produced by a manufacturing activity should: (a) be intended to fulfill the function of information processing and communication including transmission and display; and (b) use electronic processing to detect, measure and/or record physical phenomena or control a physical process. Based on the ISIC Rev. 3, the same OECD document (ibid.) suggests manufacturing activities that fulfill requirements (a) and (b). They are presented in Table 1 below with the corresponding concordance with the Brazilian activities classification (CNAE).

¹ On this matter see, for instance, Jorgenson & Stiroh, (2000), Oliner & Sichel (2000), Stiroh, (2002), Jorgenson (2005), and Jorgenson, Ho, Samuels & Stiroh (2006).

² The OECD definition was originally approved in 1998 and amended slightly in 2002 to reflect the international standard industry classification (ISIC) Rev 3.1 changes to Wholesale (OECD, 2003, p. 1).

ISIC code	Description	CNAE code
3000	Office, accounting and computing machinery	30
3130	Insulated wire and cable	31.30
3210	Electronic valves and tubes and other electronic components	32.10
3220	Television and radio transmitters and apparatus for line telephony and line telegraphy	32.21 and 32.22
3230	Television and radio receivers, sound or video recording or reproducing apparatus and associated goods	32.30
	Instruments and appliances for measuring, checking, testing, navigating and other purposes, except industrial process equipment	
3313	Industrial process equipment	33.30
Course	Own alabaration based on OECD (2002)	

TABLE 1 – ISIC/CNAE CONCORDANCE TABLE FOR ICT MANUFACTURING

Source: Own elaboration based on OECD (2002).

The above OECD definition of ICT manufacturing activities is complemented by the definition of ICT goods presented in OECD (2003, pp. 8 - 13). The list of ICT goods is classified in accordance with the Harmonized System (HS), witch is compatible with the MERCOSUL foreign trade classification (NCM). For its turn, there is a correspondence between the NCM and the IBGE list of products (PRODLIST) utilized in the Brazilian Annual Industrial Survey (PIA) for products. Using this last correspondence we have managed to measure the share of gross output of ICT goods in the corresponding total gross output of the ICT manufacturing CNAE activities shown in Table 1. The results are presented in Table 2 below.

CNAE code	Description	Share ICTs/Total (%)
30.1	Manufacture of Office Machinery Production	1,70%
30.2	Manufacture of equipment and Machinery of electronic systems for data processing	100,00%
31.3	Manufacture of Insulated wire, cable and electric conductors;	12,70%
32.1	Manufacture of basic electronic components	82,80%
32.2	Manufacture of television and radio transmitters and apparatus for line telephony and line telegraphy	99,70%
32.3	Manufacture of television and radio receivers, sound or video recording or reproducing apparatus and associated goods	100,00%
33.2	Instruments and appliances for measuring, checking, testing, navigating and other purposes, except industrial process equipment	85,70%
33.3	Manufacture of electronic systems machinery, instruments and equipments related to industrial process control and automation	100,00%

 TABLE 2 - ICT GOODS SHARE IN TOTAL ICT MANUFACTURING ACTIVITIES GROSS OUTPUT

Source: Own elaboration based on Annual Industrial Survey for products (2003).

This procedure allows the investigation of the actual ICT content of the OECD ICT industries. As can be verified in Table 2, the ICT goods have a very low share in two industries: manufacture of office machinery production (30.1), with a value of 1.7% and manufacture of insulated wire, cable and electric conductors (31.3), with a value of 12.7%. Because of this revealed small ICT content, the last two activities were excluded from the definition of the Brazilian ICT sector. Therefore, the Brazilian ICT sector investigated in the present work comprises only the five remaining ICT manufacturing activities (codes 30.2, 32.1, 32.2, 32.3, and 33.3).

2.2. ICT SERVICES INDUSTRIES

The ICT services industries are defined as those activities whose produced services are "intended to enable the function of information processing and communication by electronic means" (OECD, 2002, p. 81). The ISIC Rev. 3 classes covered by this definition according to OECD (ibid., p. 81) and their corresponding CNAE activities are shown in Table 3 below.

ISIC code	Description	CNAE code
5150	Wholesaling of machinery, equipment and supplies (if possible only the wholesaling of ICT goods should be included)	51.65-9
7123	Renting of office machinery and equipment (including computers)	71.33-1
642	Telecommunications	64.2
72	Computer and related activities	72

TABLE 3 - ISIC/CNAE CONCORDANCE TABLE FOR ICT SERVICES

Source: Own elaboration based on OECD (2002).

It should be noted that the first two services industries in Table 3 are defined at a 4-digit CNAE classification level, the third one at a 3-digit CNAE level, and the last service activity at a 2-digit CNAE level. On the other side, the Brazilian annual surveys for services (PAS) and trade (PAC) activities present related information only up to a maximum disaggregation corresponding to a 3-digit CNAE classification level. Thus, for the first two services industries above, the relevant information can only be encountered together with other information related to non-ICT services activities according to the OECD definition.³ Consequently, we've decided to leave these two services industries out of the Brazilian ICT sector.⁴

2.3. THE BRAZILIAN ICT SECTOR

Hence the Brazilian ICT sector is comprised by five manufacturing and two services industries. The resulting ICT industries with the corresponding CNAE code are presented in Table 4.

³ For instance, at the Annual Trade Survey (PAC) the CNAE group 51.6 we find the CNAE ICT activity 51.65-9 together with the activity of wholesaling of machineries, appliances and equipments involving non-ICT goods. Analogously, the CNAE ICT activity 71.33-1 can be encountered in the Annual Services Survey (PAS) in CNAE group 71.3 together with non-ICT goods renting activities.

⁴ It must be highlighted that we could not verify the ICT content of the remaining ICT services industries, as we have done in the case of the ICT manufacturing industries, because there is no established ICT services list.

CNAE code	Description					
30.2	Manufacture of equipment and Machinery of electronic systems for data processing					
32.1	Manufacture of basic electronic components					
32.2	Manufacture of television and radio transmitters and apparatus for line telephony and line telegraphy					
32.3	Manufacture of television and radio receivers, sound or video recording or reproducing apparatus and associated goods					
33.3	Manufacture of electronic systems machinery, instruments and equipments related to industrial process control and automation					
64.2	Telecommunications					
72	Computer and related activities					

TABLE 4 – BRAZILIAN ICT INDUSTRIES

Source: Own elaboration.

3. IO UPDATING AND DISAGGREGATION METHODOLOGIES

In order to assess the structural characteristics of the ICT producing industries by the use of an IO model, it was necessary to apply a disaggregation methodology. However, the application of this type of methodology presupposes the existence of a detailed IO statistical database. The last official IO matrix and related data for the Brazilian economy compiled by the Brazilian statistical office (IBGE) is based on 1996 data. Nevertheless, IBGE has published the Make and Use tables of the SNA (System of National Accounts) with 2003 data at the same level of aggregation as the 1996 IO matrix. Thus it was possible to apply an updating methodology to obtain an IO matrix and related data for 2003, by the combination of the incomplete information from the 2003 Make and Use tables with the more detailed information coming from the 1996 IO matrix database.

3.1. UPDATING METHODOLOGY

The updating methodology applied in this work was proposed by Grijó and Bêrni (2005). The main task involves the transformation of the use table measured in the System of National Accounts at consumers' prices into the domestic supply use table measured at basic prices. To transform consumer prices into basic prices, one must first exclude trade and transportation margins,⁵ then exclude indirect taxes collected and remitted by producers and finally isolate the domestic demand from imports. We therefore combined information from the last official IO database, which contains 1996 data for the margins, taxes and imports by using industries, with the available information from Brazilian SNA for 2003, witch comprises: (a) the use table at consumer prices; and (b) the values obtainable from the Make table for the production at basic prices, for the trade and transportation margins, for the indirect taxes and for the imports by commodities.

The basic methodology consists of four steps:

- a) Define a mark-down matrix for the use of domestic supply at basic prices and mark-up matrices for indirect taxes, trade and transportation margins and imports, based on the official 1996 IO database;
- b) Given those mark-down and mark-up matrices, obtain a first estimation of the use table at basic prices, as well as the commodity-by-industry tables of indirect taxes, trade and transportation

⁵ These margins are treated separately as commodities that are produced by industries and purchased by intermediate and final users.

margins and imports for 2003;

- c) In the case of structural changes in production, trade and transportation margins, imports or taxes from 1996 to 2003, make adjustments to fill possible blanks in the 1996 structure; and
- d) Use the RAS method⁶ to reconcile the two sources of information, aiming to balance all five tables given the known 2003 values of the make and use tables of the System of National Accounts.

The results of the application of the updating methodology are indirectly presented in the next part, when we discuss the disaggregation of the updated matrix.

3.2. DISAGGREGATION METHODOLOGY

The calculated Brazilian IO matrix is composed of 42 activities. However, this level of aggregation is not detailed enough to identify the ICT-producing sectors. To isolate both the direct and indirect effects of those sectors, we need to disaggregate the IO matrix. The methodology proposed here is derived from Wolsky (1984). The original method consists of two steps for disaggregating the technical coefficient matrix:

- Step 1: Simple disaggregation, based on the share of the sub-industries in the total gross output of the industry; and
- Step 2: Distinguishing matrix, based on additional information about sub-industries.⁷

This methodology presents two limitations given the current availability of data for the Brazilian economy and the complete IO model used below. First, the direct disaggregation of the technical coefficient matrix prevents the use of additional information in terms of the flow data related to the make and use tables. Second, the disaggregation is only applied to intermediary consumption and not to the other components of the IO model (namely, value added, final demand and employment). We therefore use a methodology that tries to overcome both limitations and is explained in more details in the appendix below.

This methodology disaggregates the flow data present in the make and use tables to obtain the technical coefficient matrix and the other components of the IO model. It is an indirect disaggretation method with regard to the IO model, because it is done at the commodity-by-industry structure rather than directly at the industry-by-industry relations, as in the Wolsky method. This methodology is implemented in four stages.

In the first stage, the market share matrix⁸ is disaggregated in two steps similar to those proposed by Wolsky. The first step is a simple disaggregation based on the share of the sub-industries in the total gross output of the original industry. The second uses additional information about sub-industries to adjust the results subject to some re-aggregation conditions. These two steps can be applied directly to market share matrix or to the make matrix, depending on the information available.

The second stage is also a two-steps disaggregation, but now they are applied on the commodityby-industry flow data contained on the intermediate transactions portion of the Use table.⁹ The steps are

⁶ UN (1999); Bulmer-Thomas (1982); Miller and Blair (1985); Kurz, Dietzenbacher and Lager (1998); Bacharach (1970).

⁷ An important remark on this methodology is that both steps must fulfill some re-aggregation conditions.

⁸ A matrix in which entries in each column show, for a given commodity, the proportion of the total output of that commodity produced in each industry. Each commodity is assumed to be produced by the various industries in fixed proportions (industry technology assumption).

⁹ In this table each column shows, for a given industry, the amount of each commodity it uses, matrix in terms of values.

the same as in the first stage, with some additional re-aggregation conditions.¹⁰ In this stage, the commodity-by-industry tables of indirect taxes, trade and transportation margins and imports are also disaggregated to guarantee the total value of production by sub-industries. We thus obtain the disaggregated tables of domestic and imported output separately, of indirect taxes by industry and of total value added and its components by industry.

Once we have determined both the disaggregated market share and the disaggregated commodity-byindustry use table, we can calculate the disaggregated technical coefficient matrix.¹¹ As for the regular industry-by-industry direct technical coefficient matrix, the third stage obtains the disaggregated matrix by pre-multiplying the input coefficients table by the market share matrix, both disaggregated. We obtain the later one from the intermediate transaction data available at the commodity-by-industry Use table

In the final stage, we disaggregate the other components of the IO model. The value added was disaggregated in the second stage, so only the final demand and employment are disaggregated in the fourth stage. The information about these components is available in the use table either by commodity, as in the case of final demand components, or by industry, as in the case of employment. The procedure for disaggregating the final demand portion of the use matrix is similar to the approach used in the third stage. That is, the final demand matrix was pre-multiplied by the disaggregated market share matrix. The components that are usually available by industry, such as employment, were disaggregated directly using specific information on the sub-industries.

3.3. IMPLEMENTATION OF THE DISAGGREGATION

As described above, in the Brazilian economy, it is possible to identify seven ICTs sub-industries, of which, five are manufacturing and two are services. As shown in Table 5, ICTs sub-industries are incorporated in three of the 42 industries of the IO Matrix. The manufacturing sub-industries are all incorporated in one: "manufacture of electronic products equipment and machinery". The services industries are incorporated in two different aggregated industries: "communications" and "services to business sector".

¹⁰ According to the type of additional information available, the two steps could be also conveniently applied on the commodity-by-industry direct input coefficient matrix.

¹¹ In these matrix entries in each column show the amount of a commodity used by an industry per dollar of output of that industry.

	Aggregated Industries	Disaggragated
SNA (SCN)	Description	Disaggregated industries
		30.2
		32.1
11	Manufacture of electronic products equipment	32.2
11	and machinery	32.3
		33.3
		Others
27	Communications	64.2
37	Communications	Others
40	Services to business sector	72
40	Services to business sector	Others

TABLE 5 - DISAGGREGATED ACTIVITIES

The data used for the disaggregation method were obtained from the Brazilian Annual Industrial Survey¹² (PIA) and the Brazilian Annual Survey for Services (PAS). The first data necessary for the simple disaggregation are shares of each sub-industry in total gross output, which are shown in Table 6 and Table 7. As described in section 6, these shares were used in the simple disaggregation of both Make and Use tables, but they are not sufficient to complete the process. Additional data were used to distinguish the use table, value added and employment coefficient. The results of the disaggregation are presented at the end of section 6.

¹² Information is available in block II: Economic Information of Firms – item C: annual costs and expenses.

4. **RESULTS**

The share of ICT sectors in the Brazilian economy in 2003 are presented in tables 8, 9, and 10. Table 8 highlights the low participation of ICT sectors in the Brazilian economy in terms of either output or value added and an even lower share in terms of employment, in which the ICT sectors represent only 1.90%. Among the ICT sectors, services sectors represent a larger share than manufactures, with telecom having the greatest share in terms of gross output and value added. This does not imply a high employment share, however: almost 80% of ICT employment is in computer and related activities, which represents less than 30% in terms of value added or gross output.

Table 9 focuses on the ICT shares in final demand components, for both domestic and imported goods. The share of households' final consumption is the greatest, followed by exports. However, the share of ICT in final demand imports is quite high at almost 19%, compared to it's a 4% share in total final demand.

The highest imports share of total final demand imports is related to television and radio transmitters and apparatus for line telephony, which is the most important component in gross fixed capital formation. This indicates a high ICT investment-related propensity to import, which is underscored by the results for the share of ICT sectors in total imports by demand component (see table 10). ICT commodities represent 25.3% of investment-related imports, which correspond to 27.9% of total ICT imports. As a simple comparison, both indicators for households' final consumption are almost half of the investment indicators. On the other hand, the share of ICT in total imports, 12.03%, is smaller than the weight in final demand, owing to the low share of intermediate demand, at only 5.03%. Nevertheless, intermediate goods imports represent more than half of total ICT imports.

The next two tables are related to static impact analysis. Table 11 and 12 present the results of a 1% increase in the exogenous final demand of each sector, instead of the usual backward and forward linkages related to the same absolute variation in each sector. Table 11 considers consumption to be part of exogenous demand, while non-durable consumption is endogenous in table 12, as explained above. As expected, the integration of the usual Keynesian-Kaleckian multiplier with the Leontief multiplier increases the multiplier and consequently the indirect effect of an increase in autonomous expenditures.

In table 13, we compare the usual backward and forward linkages of ICT sectors in Brazil with the United States. The data show some relevant differences in the penetration pattern of ICT in the two economies. The backward linkages, which indicate the effect of an increase in a specific sector's final demand, show a similar order of magnitude among Brazilian and American economies, particularly for ICT manufacturing and information services. Conversely, the forward linkages, which measure the impact on a specific sector of an increase in total exogenous final demand, present a divergent pattern in the two countries. Although ICT manufacturing and telecommunications show a very high forward linkage index in the United States economy, they are both below average in Brazil. This last result reveals the incipient nature of the ICT diffusion in the Brazilian economy. The low forward linkages points to the small penetration ICT goods and services in demand pattern of the Brazilian economy.

5. CONCLUDING REMARKS

Despite its narrow scope, the present study constitutes a first step towards the analysis of the impact of ICT diffusion on the Brazilian economy. The results presented above shows an overall low ICT diffusion in the Brazilian economy. This is observed either in terms of the small shares of ICT producing

sectors in total gross output, value added and employment, as well as, in ICT shares in final demand components. In contrast, the share of ICT in total imports and even more so in final demand imports is quite significant, consistently with the small share of the ICT producing industries in Brazil, as indicated before. It is important to highlight, however, that the high import coefficient is not due to a high use of ICT in the Brazilian economy. As was pointed out, the forward linkages of the ICT industries in Brazil are remarkably low when compared to the United States, and also to the average forward linkage of the Brazilian economy.

SNA (SCN)	Disaggregated activities	Description	Share of TGO
	30.2	Manufacture of Equipment and Machinery of electronic systems for data processing	21,4%
	32.1	Manufacture of basic electronic components Manufacture of television and radio	10,5%
	32.2	transmitters and apparatus for line telephony and line telegraphy	39,7%
11	32.3	Manufacture of television and radio receivers, sound or video recording or reproducing apparatus and associated goods	23,0%
	33.3	Manufacture of electronic systems machinery, instruments and equipments related to industrial process control	1,3%
		Others	4,1%

TABLE 6 – SHARE OF TOTAL GROSS OUTPUT VALUE FOR ICTS MANUFACTURING

TABLE 7 – SHARE OF TOTAL GROSS OUTPUT VALUE FOR ICTS SERVICES

SNA (SCN)	aggregated activities	D	Share of TGO	
37	Communications	64.2	Telecommunications	90,8%
57	Communications		Others	9,2%
40	Services to business sector	72	Computer and related activities	29,2%
40	Services to business sector		Others	70,8%

TABLE 8 - SHARE OF ICT SECTORS IN BRAZIL (2003)

ICT Sectors	Gross Output	Value Added	Employment
Machinery of electronic systems for data			
processing	0.13%	0.10%	0.04%
Basic electronic components	0.07%	0.05%	0.06%
Television and radio transmitters and			
apparatus for line telephony	0.25%	0.19%	0.03%
Television and radio receivers, sound or			
video recording	0.14%	0.11%	0.04%
Electronic systems machinery, instruments and equipments related to industrial process			
control and automation	0.01%	0.01%	0.01%
Telecommunications	2.11%	2.65%	0.20%
Computer and related activities	0.88%	1.20%	1.51%
Total ICT	3.60%	4.30%	1.90%

TABLE 9 - SHARE OF ICT SECTORS IN BRAZIL (2003) - II

ICT Sectors	Gross Fixed Capital Formation	Exports	Households Final Consumption	Total Final Demand	Total Final Demand Imports
Machinery of electronic systems for data processing	0.83%	0.55%	0.28%	0.35%	3.98%
Basic electronic	0.40%	0.27%	0.14%	0.17%	1.94%

components					
Television and radio transmitters and apparatus for line telephony	1.53%	1.02%	0.51%	0.66%	7.35%
Television and radio receivers, sound or video recording	0.89%	0.59%	0.30%	0.38%	4.26%
Electronic systems machinery, instruments and equipments related to industrial process control and automation	0.05%	0.03%	0.02%	0.02%	0.25%
Telecommunications	0.04%	0.60%	4.08%	2.08%	0.23%
Computer and related activities	0.29%	1.42%	0.07%	0.29%	0.43%
Total ICT	4.02%	4.48%	5.39%	3.96%	18.44%

TABLE 10 - SHARE OF ICT ON TOTAL IMPORTS BY DEMAND COMPONENT

ICT Sectors	Gross Fixed Capital Formation	Exports	Households Final Consumption	Total Final Demand Imports	Total intermediate goods imports	Total Imports
Machinery of electronic systems for data processing	5.46%	4.76%	2.68%	3.98%	1.04%	1.89%
Basic electronic components	2.66%	2.32%	1.31%	1.94%	0.51%	0.92%
Television and radio transmitters and apparatus for line telephony	10.10%	8.80%	4.96%	7.35%	1.93%	3.50%
Television and radio receivers, sound or video recording	5.86%	5.10%	2.87%	4.26%	1.12%	2.03%
Electronic systems machinery, instruments and equipments related to industrial process control and automation	0.34%	0.30%	0.17%	0.25%	0.07%	0.12%
Telecommunications	0.29%	0.00%	0.19%	0.23%	0.20%	0.71%
Computer and related activities	0.57%	0.00%	0.34%	0.43%	0.16%	2.86%
Total ICT	25.29%	21.27%	12.52%	18.44%	5.03%	12.03%
Share on ICT imports ^a	27.91%	0.23%	14.74%	44.26%	55.74%	100.00%

a – Share of ICT imports by demand component on total ICT imports.

TABLE 11 - STATIC IMPACT ANALYSIS - EXOGENOUS CONSUMPTION

ICT Sectors	Gross Output	Value Added	Employment
Machinery of electronic systems for data			
processing	40,400	14,677	160
Basic electronic components	19,692	7,363	285
Television and radio transmitters and			
apparatus for line telephony	74,723	27,621	146

Television and radio receivers, sound or			
video recording	43,329	16,696	187
Electronic systems machinery, instruments and equipments related to industrial process			
control and automation	2,522	1,156	41
Telecommunications	639,812	388,919	885
Computer and related activities	267,589	176,047	6,655
Total ICT	1,088,067	632,479	8,358
Total	30,261,669	14,702,650	439,867

TABLE 12 - STATIC IMPACT ANALYSIS - ENDOGENOUS CONSUMPTION

ICT Sectors	Gross Output	Value Added	Employment
Machinery of electronic systems for data	76 022	27.619	201
processing	76,022	27,618	301
Basic electronic components	37,054	13,855	536
Television and radio transmitters and apparatus for line telephony	140,608	51,975	276
Television and radio receivers, sound or			
video recording	81,532	31,417	351
Electronic systems machinery, instruments and equipments related to industrial process			
control and automation	4,746	2,175	77
Telecommunications	776,774	472,173	1,075
Computer and related activities	373,982	246,043	9,301
Total ICT	1,490,718	845,256	11,915
Total	36,849,117	17,663,707	515,104

TABLE 13 - BACKWARD AND FORWARD LINKAGES – BRAZIL X USA

Brazil (2003)									
ICT sectors	Backward linkages (Average)	Backward linkages (Index)	Forward linkages (Average)	Forward linkages (Index)					
ICT manufactures	0.050	1.030	0.027	0.558					
Telecommunications	0.035	0.722	0.047	0.959					
Information Services	0.035	0.708	0.038	0.785					
US (2003)									
ICT sectors	Backward linkages (Average)	Backward linkages (Index)	Forward linkages (Average)	Forward linkages (Index)					
ICT manufactures	0.035	1.144	0.038	1.240					
Telecommunications	0.031	1.035	0.050	1.644					
Information Services	0.028	0.913	0.024	0.796					

6. **REFERENCES**

- Bacharach, M. (1970) *Biproportional matrices & input-output change*, Cambridge: Cambridge University Press.
- Bartelsman, E., Bassanini, A., Haltiwanger, J., Jarmin, R., Scarpetta, S., & Schank, T. (2002) "The Spread of ICT and Productivity Growth: is Really Europe Lagging Behind in the New Economy?", *Fondazione Rodolfo DeBenedetti*, downloadable at http://www.frdb.org/images/customer/copy_1_rdb_final_draft_1.pdf.
- Bulmer-Thomas, V. (1982), Input-Output Analysis in Developing Countries: Sources, Methods and Applications, London: John Wiley and Sons.
- Grijó, E. & Bêrni, D. de Ávila (2005), "Metodologia Completa para a Estimativa de Matrizes de Insumo-Produto", *VIII Encontro de Economia da Região Sul, ANPEC – SUL 2005*.
- Jorgenson, D. W. (2005), "Accounting for Growth in the Information Age", *in* Aghion, P. & Durlauf, S. (ed.) *Handbook of Economic Growth*, Amsterdam: North Holland.
- Jorgenson, D. W., Ho, M. S., Samuels, J. & Stiroh, K. J. (2006) "The Industry Origins of the American Productivity Resurgence", downloadable at http://post.economics.harvard.edu/faculty/jorgenson/papers/IndustryOriginsAmerProdResurg_1002 06.pdf.
- Jorgenson, D. W. & Stiroh, K. J. (2000), "Raising the Speed Limit: U.S. Economic Growth in the Information Age." *Brookings Papers on Economic Activity*, 1.
- Kurz, H. D., Dietzenbacher, E. & Lager, C. (1998) *Input-Output Analysis Volume I*. Cheltenham: Edward Elgar.
- Miller, R. E. & Blair, P. D. (1985), *Input-Output Analysis: Foundation and Extensions*, New Jersey: Prentice Hall.
- OECD (2001), Measuring Productivity: Measurement of Aggregate and Industry-level Productivity Growth, OECD, Paris, downloadable at http://www.oecd.org/dataoecd/59/29/2352458.pdf.
- OECD (2002), *Measuring the Information Economy*, OECD, Paris, downloadable at www.oecd.org/dataoecd/16/14/1835738.pdf.
- OECD (2003) A proposed classification of ICT goods, OECD, Paris, downloadable at www.oecd.org/dataoecd/5/61/22343094.pdf.
- OECD (2004) The Economic Impact of ICT: measurement, evidence and implications, Paris: OECD.
- Oliner, S. D. & Sichel, D. E. (2000), "The Resurgence of Growth in the Late 1990s: Is Information Technology the Story?" *Journal of Economic Perspectives*, 14 (4).
- Schreyer, P. (2000) "The Contribution of Information and Communication Technology to the Output Growth: a Study of the G7 Countries." *STI Working Paper*, OECD, Paris
- Stiroh, K. J. (2002), "Information Technology and U.S. Productivity Revival: What Do the Industry Data Say?" *American Economic Review*, 92 (5).
- Wolsky, A. M. (1984) "Disaggregating Input-Output Models." *Review of Economics and* Statistics, 66 (2).
- United Nations (1999) Handbook of Input-Output Table Compilation and Analysis. Statistical Division, New York.
- van Ark, B. & Inklaar, R. (2005), "Catching UP or Getting Stuck? Europe's Troubles to Exploit ICT's Productivity Potential", GGDC Research Memorandum, GD-79, downloadable at <u>http://www.ggdc.net/pub/online/gd79(online).pdf</u>

7. APENDIX

7.1. DISAGGREGATING THE DIRECT INPUT COEFFICIENTS MATRIX

We can write the industry-by-industry direct input coefficients matrix as:

A = SB

where **S** is an industry-by-commodity *market-share* matrix in which entries in each column show, for a given commodity, the proportion of the total output of that commodity produced in each industry; and \mathbf{B} – direct input coefficients matrix - is a commodity-by-industry matrix in which entries in each column show the amount of a commodity used by an industry per dollar of output of that industry. Therefore, the A^d matrix can be obtained by disaggregating both S and B matrix, in such a way that:

$$\mathbf{A}^{\mathbf{d}} = \mathbf{S}^{\mathbf{d}}\mathbf{B}^{\mathbf{d}}$$

Disaggregating the market-share matrix

The market share table is basically an algebraic transformation of the Make table (**Q**) of the National accounts system. The disaggregation of the make table consists of two-steps: First it is done a simple disaggregation based on the share of the sub-industries in the total gross output of the original industry. These are incorporated into a $(m \ge m+1)$ disaggregation matrix Ω^{13} :

	1	•••	0	0	0
Ω=	÷	·.	÷		:
	0	•••	1	0	0
	$\overline{0}$	••••	0	$\omega_{\rm l}$	ω_2

where ω_1 and ω_2 are the estimates of the sub-sectors share in the output value of the original system. By post-multiplying the original make table by the disaggreation matrix we obtain the $(n \ge m+1)$ augmentedmake table $\tilde{\mathbf{O}}$:

$$\tilde{\mathbf{Q}} = \mathbf{Q}\mathbf{\Omega} = \begin{bmatrix} q_{11} & \cdots & q_{1,m-1} & \omega_1 q_{1m} & \omega_2 q_{1m} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ q_{n1} & \cdots & q_{n,m-1} & \omega_1 q_{nm} & \omega_2 q_{nm} \end{bmatrix}$$

Then, using additional information about sub-industries, the results are adjusted subject to some re-aggregation conditions. This information, when available is represented in the $(n \times m+1)$ production structure distinction matrix Γ_{n} :

$$\boldsymbol{\Gamma}_{\mathbf{P}} = \begin{bmatrix} 1 & \cdots & 1 & | & (1+\gamma_{1,m}) & (1+\gamma_{1,m+1}) \\ \vdots & \ddots & \vdots & | & \vdots & & \vdots \\ 1 & \cdots & 1 & | & (1+\gamma_{nm}) & (1+\gamma_{n,m+1}) \end{bmatrix}$$

By mutiplying each entry of the augmented-make table by the correspondent¹⁴ element of the distinction matrix we obtain the disaggregated make table Q^d :

$$\mathbf{Q}^{\mathbf{d}} = \tilde{\mathbf{Q}} * \mathbf{\Gamma}_{\mathbf{P}} = \begin{bmatrix} q_{11}^{d} & \cdots & q_{1,m-1}^{d} & q_{1,m}^{d} & q_{1,m+1}^{d} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ q_{n1}^{d} & \cdots & q_{n,m-1}^{d} & q_{nm}^{d} & q_{n,m+1}^{d} \end{bmatrix} = \begin{bmatrix} q_{11} & \cdots & q_{1,m-1} & \omega_{1}q_{1m}(1+\gamma_{1,m}) & \omega_{2}q_{1m}(1+\gamma_{1,m+1}) \\ \vdots & \ddots & \vdots & \vdots \\ q_{n1} & \cdots & q_{n,m-1} & \omega_{1}q_{nm}(1+\gamma_{nm}) & \omega_{2}q_{nm}(1+\gamma_{n,m+1}) \end{bmatrix}$$

¹³ Without loss of generality, we are assuming that the last sector will disaggregated in two sectors, this result could be easily generalized to disaggregating any number of sector into any different parts. ¹⁴ The simble "*" is used for the Hadamard product or **entrywise product**. The Hadamard product of two *m*-by-*n* matrices *A*

and *B*, denoted by A * B, is an *m*-by-*n* matrix given by $(A \bullet B)_{ij} = a_{ij}b_{ij}$. (Rao, 1973, p. 30).

subjet to some re-aggregating conditions:

$$q_{ij} = q_{ij}^d \quad \forall i = 1, ..., n; \quad j = 1, ..., m - 1.$$

 $q_{im} = q_{im}^d + q_{i,m+1}^d \quad \forall i = 1, ..., n$

In order to be consistent with the second condition, it is possible to demonstrate that the distinction coefficients must but related in the following way:

$$\gamma_{im} = -\frac{\omega_2}{\omega_1} \gamma_{i,m+1}$$

Once obtained the disaggregated make table, the usual procedure can be aplied to obtain the disaggregated market-share table:

$$\mathbf{S}^{\mathbf{d}} = \mathbf{Q}^{\prime \mathbf{d}} \left(\hat{\mathbf{q}} \right)^{-1} = \begin{vmatrix} s_{11} & \cdots & s_{n1} \\ \vdots & \ddots & \vdots \\ s_{1,m-1} & \cdots & s_{n,m-1} \\ \hline \omega_1 s_{1m} (1 + \gamma_{1m}) & \cdots & \omega_1 s_{nm} (1 + \gamma_{nm}) \\ \omega_2 s_{1m} (1 + \gamma_{1,m+1}) & \cdots & \omega_2 s_{nm} (1 + \gamma_{n,m+1}) \end{vmatrix}$$

where $(\hat{\mathbf{q}})^{-1}$ is the $(n \ge n)$ diagonal inverted matrix of the commodities' output and $s_{ij} = q_{ij}/q_i$ is the coefficient of the original market-share matrix.

An analogous procedure can also be applied directly to the market-share matrix. We first obtain the augmented-market-share matrix \tilde{S} , using the same disaggregation matrix Ω :

$$\tilde{\mathbf{S}} = \mathbf{\Omega}' \mathbf{S} = \begin{bmatrix} s_{11} & \cdots & s_{1n} \\ \vdots & \ddots & \vdots \\ s_{m-1,1} & \cdots & s_{m-1,n} \\ \hline \omega_1 s_{m1} & \cdots & \omega_1 s_{mn} \\ \hline \omega_2 s_{m1} & \cdots & \omega_2 s_{mm} \end{bmatrix}$$

In order to obtain the disaggregated market-share matrix we must add to this augmented matrix a distinction matrix containing the additional information. It is important to notice that this procedure of disaggregating the coefficients is closer to the one proposed by Wolsky.

$$\mathbf{S}^{\mathbf{d}} = \tilde{\mathbf{S}} + \boldsymbol{\Delta}_{\mathbf{p}} = \begin{bmatrix} s_{11} & \cdots & s_{1n} \\ \vdots & \ddots & \vdots \\ \frac{s_{m-1,1}}{\omega_1 s_{m1} + \lambda_1} & \cdots & \omega_1 s_{mn} + \lambda_n \\ \omega_2 s_{m1} - \lambda_1 & \cdots & \omega_2 s_{mn} - \lambda_n \end{bmatrix} \text{ where, } \boldsymbol{\Delta}_{\mathbf{p}} = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\ \frac{\lambda_1}{\lambda_1} & \cdots & \lambda_n \\ -\lambda_1 & \cdots & -\lambda_n \end{bmatrix},$$

and λ_i is the distinction coefficient of the production of the sub-sector in relation to commodity *j*.

The choice of disaggregation method of the market-share matrix depends on the availability and quality of the additional information. If there is enough information for both procedures, they can be combined in order to guarantee a better result. In order to compare both it is possible to assume that: $\lambda_i = \omega_1 s_{im} \gamma_{im} = -\omega_2 s_{im} \gamma_{i,m+1}$

Disaggregating of the commodity-by-industry direct input coefficients

Correspondingly, it is possible to obtain the disaggregated commodity-by-industry direct input coefficients table directly or indirectly. The indirect method consists on disaggregating first the Use table of input flows in two steps similar to the ones described above. First, by using the same disaggregation matrix Ω we obtain the augmented use table:

$$\tilde{\mathbf{U}} = \mathbf{U}\mathbf{\Omega} = \begin{bmatrix} u_{11} & \cdots & u_{1,m-1} & \omega_1 u_{1m} & \omega_2 u_{1m} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ u_{n1} & \cdots & u_{n,m-1} & \omega_1 u_{nm} & \omega_2 u_{nm} \end{bmatrix}$$

The additional information about the use structure, when available, can be represented into another (n x m+1) distinction matrix Γ_{u} :

$$\boldsymbol{\Gamma}_{\mathbf{U}} = \begin{bmatrix} 1 & \cdots & 1 & | & (1 + \mathcal{G}_{1,m}) & (1 + \mathcal{G}_{1,m+1}) \\ \vdots & \ddots & \vdots & | & \vdots & & \vdots \\ 1 & \cdots & 1 & | & (1 + \mathcal{G}_{nm}) & (1 + \mathcal{G}_{n,m+1}) \end{bmatrix}$$

The disaggregated use table is obtained by the entrywise product of the augmented table and the distinction matrix:

$$\mathbf{U}^{\mathbf{d}} = \tilde{\mathbf{U}}^{*} \mathbf{\Gamma}_{\mathbf{U}} = \begin{bmatrix} u_{11}^{d} & \cdots & u_{1,m-1}^{d} & u_{1,m}^{d} & u_{1,m+1}^{d} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ u_{n1}^{d} & \cdots & u_{n,m-1}^{d} & u_{nm}^{d} & u_{n,m+1}^{d} \end{bmatrix} = \begin{bmatrix} u_{11} & \cdots & u_{1,m-1} & \omega_{1}u_{1m}(1+\vartheta_{1m}) & \omega_{2}u_{1m}(1+\vartheta_{1,m+1}) \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ u_{n1} & \cdots & u_{n,m-1} & \omega_{1}u_{nm}(1+\vartheta_{nm}) & \omega_{2}u_{nm}(1+\vartheta_{n,m+1}) \end{bmatrix}$$

subject to the following re-aggregation conditions¹⁵:

$$u_{ij} = u_{ij}^{d} \quad \forall i = 1, ..., n; \quad j = 1, ..., m - 1.$$
$$u_{im} = u_{im}^{d} + u_{im+1}^{d} \quad \forall i = 1, ..., n$$

Now, it is possible to obtain the disaggregated domestic direct input coefficient matrix:

$$\mathbf{B}^{\mathbf{d}} = \mathbf{U}^{\mathbf{d}} \left(\hat{\mathbf{g}}^{\mathbf{d}} \right)^{-1} = \begin{bmatrix} \alpha_{11} & \cdots & \alpha_{1,m-1} & \alpha_{1m} \left(1 + \mathcal{G}_{1,m} \right) & \alpha_{1m} \left(1 + \mathcal{G}_{1,m+1} \right) \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{n,m-1} & \alpha_{nm} \left(1 + \mathcal{G}_{nm} \right) & \alpha_{nm} \left(1 + \mathcal{G}_{n,m+1} \right) \end{bmatrix}$$

where $(\hat{\mathbf{g}}^d)^{-1}$ is the $(m+1 \ge m+1)$ diagonal inverted matrix of the sectors' or sub-sectors's output and $\alpha_{ij} = u_{ij} / g_j^d$.

The direct method for disaggregating the **B** matrix is basically the same of the one used with the market share matrix, that is, adding to the augmented coefficient matrix \tilde{B} a distinction matrix Δ_{II} :

$$\mathbf{B}^{\mathbf{d}} = \tilde{\mathbf{B}} + \boldsymbol{\Delta}_{\mathbf{u}} = \begin{bmatrix} \alpha_{11} & \cdots & \alpha_{1,m-1} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{n,m-1} \end{bmatrix} \begin{vmatrix} \alpha_{1m} + \omega_2 \partial_1 & \alpha_{1m} - \omega_1 \partial_1 \\ \vdots & \vdots \\ \alpha_{nm} + \omega_2 \partial_n & \alpha_{nm} - \omega_1 \partial_n \end{bmatrix}$$

where:

$$\tilde{\mathbf{B}} = \begin{bmatrix} \alpha_{11} & \cdots & \alpha_{1,m-1} & \alpha_{1m} & \alpha_{1m} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{n,m-1} & \alpha_{nm} & \alpha_{nm} \end{bmatrix} e \quad \boldsymbol{\Delta}_{\mathbf{U}} = \begin{bmatrix} 0 & \cdots & 0 & \omega_2 \partial_1 & -\omega_1 \partial_1 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \omega_2 \partial_n & -\omega_1 \partial_n \end{bmatrix}$$

and ∂_i is the distinction coefficient of the use of product i by the sub-sectors. Once again, the choice of the disaggregation method, either direct or indirect, depends on the quality of the available data. It is also possible to combine¹⁶ both methods.

¹⁵ In order to attend the second re-aggregation conditions, the distinction coefficients must attend the rule: $\mathcal{G}_{im} = -\frac{\omega_2}{\omega_1} \mathcal{G}_{i,m+1}$

¹⁶ In this case, the results obtained by the two different procedures are related in the followin manner:

7.2. Employment Coefficient Disaggregation

The disaggregation of the labor coefficients vector (l) follows the same procedure used to obtain the disaggregated direct input coefficients matrix. Given the original vector with employment level at each sector we obtain the augmented vector:

$$\tilde{\mathbf{n}} = \mathbf{\Omega}' \mathbf{n} = \begin{bmatrix} n_1 \\ \vdots \\ n_{m-1} \\ \hline \\ \omega_1 n_m \\ \hline \\ \omega_2 n_{m+1} \end{bmatrix}.$$

and with additinal information translated into a distinction vector $\boldsymbol{\theta}$ we obtain the disaggregated vector (\mathbf{n}^d) :

$$\mathbf{n}^{d} = \tilde{\mathbf{n}} * \boldsymbol{\theta} = \begin{bmatrix} n_{1}^{d} \\ \vdots \\ n_{m-1}^{d} \\ n_{m}^{d} \\ n_{m+1}^{d} \end{bmatrix} = \begin{bmatrix} n_{1} \\ \vdots \\ n_{m-1} \\ \cdots \\ \omega_{1} n_{m} (1 + \theta_{m}) \\ \omega_{2} n_{m} (1 + \theta_{m+1}) \end{bmatrix} \text{ where } \boldsymbol{\theta} = \begin{bmatrix} 1 \\ \vdots \\ 1 \\ 1 + \theta_{m} \\ 1 + \theta_{m+1} \end{bmatrix}.$$

subject to the re-aggregating conditions:

$$n_{j} = n_{j}^{d} \qquad (\forall j = 1, ..., m-1)$$
$$n_{m} = n_{m}^{d} + n_{m+1}^{d}$$

$$\mathbf{l}^{\mathbf{d}} = \hat{\mathbf{n}}^{\mathbf{d}} \left(\hat{\mathbf{g}}^{\mathbf{d}} \right)^{-1} \mathbf{i}_{m+1} = \begin{bmatrix} l_1^{a} \\ \vdots \\ l_{m-1}^{d} \\ l_{m}^{d} \\ l_{m+1}^{d} \end{bmatrix} = \begin{bmatrix} l_1 \\ \vdots \\ l_{m-1}^{d} \\ l_{m}(1+\theta_{m+1}) \end{bmatrix}$$

This vector will attend the re-aggregation conditions as long as:

$$\theta_m = -\frac{\omega_2}{\omega_1} \theta_{m+1}$$

7.3. FINAL DEMAND DISAGGREGATION

In the use table we obtain the final demand vector by commodity $\boldsymbol{\phi}$, however, in the input-output model, the relevant vector is the industry-by-one final demand **f**. This last one can be easily obtained by pre-multiplying it by the market-share matrix:

$$\mathbf{f} = \mathbf{S}\boldsymbol{\varphi} = \begin{bmatrix} f_1 \\ \vdots \\ f_m \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n s_{1i}\varphi_i \\ \vdots \\ \sum_{i=1}^n s_{mi}\varphi_i \end{bmatrix}$$

 $\partial_{i} = \alpha_{im} \mathcal{G}_{im} / \omega_{2} = -\alpha_{im} \mathcal{G}_{i,m+1} / \omega_{1}$

Since the vector of final demand by commodity is not affected by the disaggregation, this same method (pre-multiplying by the S^d matrix) can be applied to obtain the disaggregated final demand vector by sector or sub-sector f^d :

$$\mathbf{f}^{\mathbf{d}} = \mathbf{S}^{\mathbf{d}} \mathbf{\phi} = \begin{bmatrix} f_1^d \\ \vdots \\ f_{m-1}^d \\ f_m^d \\ f_{m+1}^d \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n s_{ni} \varphi_i \\ \vdots \\ \sum_{i=1}^n s_{mi} \varphi_i + \sum_{i=1}^n \lambda_i \varphi_i \\ \varphi_1 \sum_{i=1}^n s_{mi} \varphi_i - \sum_{i=1}^n \lambda_i \varphi_i \\ \varphi_2 \sum_{i=1}^n s_{mi} \varphi_i - \sum_{i=1}^n \lambda_i \varphi_i \end{bmatrix}$$

We can define $\sigma_f = \sum_{i=1}^n \lambda_i \varphi_i$ as the distinction coefficient of final demand and re-write the disaggregated

final demand vector by sectors in the following way: $\begin{bmatrix} f^d \end{bmatrix} \begin{bmatrix} f \\ f \end{bmatrix}$

$$\mathbf{f}^{\mathbf{d}} = \begin{bmatrix} f_1^d \\ \vdots \\ \frac{f_{m-1}^d}{f_m^d} \\ f_{m+1}^d \end{bmatrix} = \begin{bmatrix} f_1 \\ \vdots \\ \frac{f_{m-1}}{\omega_1 f_m + \sigma_f} \\ \omega_2 f_m - \sigma_f \end{bmatrix}$$

It is possible to verify that the disaggregated final demand vector meets the re-aggregation conditions.

		30.2 3	32.1 32	11 1.2 32.	.3 3	33.3 c	outros	37 64.2 c	outros	40 72 o	utros
101	Café em coco	0	0	0	0	0	0	0	0	0	0
102	Cana-de-açúcar	0	0	0	0	0	0	0	0	0	0
103 104	Arroz em casca Trigo em grão	0	0	0	0	0	0	0	0	0	0
105	Soja em grão	0	0	0	0	0	0	0	0	0	0
106	Algodão em caroço	0	0	0	0	0	0	0	0	0	0
107	Milho em grão	0	0	0	0	0	0	0	0	0	0
108	Bovinos e suínos	0	0	0	0	0	0	0	0	0	0
109 110	Leite natural Aves vivas	0	0	0	0	0	0	0	0	0	0
199	Outros produtos agropecuários	0	0	0	0	0	0	0	0	0	0
201	Minério de ferro	0	0	0	0	0	0	0	0	0	0
202	Outros minerais	10,079	4,634	21,772	11,924	430	1,696	0	0	0	0
301	Petróleo e gás	0	0	0	0	0	0	0	0	0	0
302 401	Carvão e outros Produtos minerais não-metálicos	0 61,312	0 28,186	0 132,441	0 72,534	0 2,614	0 10,316	0 64,763	0 4,713	0	0
501	Produtos siderúrgicos básicos	01,312	20,100	0	12,004	2,014	0	04,705	4,713	0	0
502	Laminados de aço	49,120	22,581	106,105	58,110	2,094	8,265	0	0	0	0
601	Produtos metalúrgicos não-ferrosos	83,529	38,399	180,430	98,816	3,561	14,054	25,713	1,871	0	0
701	Outros produtos metalúrgicos	148,780	68,396	321,380	176,010	6,342	25,032	424,212	30,868	10,023	22,426
801 802	Fabricação e manutenção de máquinas e equipamentos Tratores e máquinas de terraplanagem	301,485 0	29,029 0	38,494 0	35,268 0	3,423 0	21,758	633,723 0	46,114	139,285 0	311,652 0
1001	Material elétrico	130,540	60,011	281,978	154,431	5,565	21,963	771,868	56,166	15,755	35,252
1101	Equipamentos eletrônicos	44,651	20,527	96,451	52,823	1,903	7,513	501,432	36,487	10,003	22,381
1201	Automóveis, caminhões e ônibus	0	0	0	0	0	0	0	0	0	0
1301	Outros veículos e peças	1,373	631	2,965	1,624	59	231	161,136	11,725	0	0
1401	Madeira e mobiliário	66,102	30,388	142,787	78,200	2,818	11,122	0	0	0	0
1501 1601	Papel, celulose, papelão e artefatos Produtos derivados da borracha	49,439 7,407	22,728 3,405	106,793 16,000	58,487 8,763	2,108 316	8,318 1,246	556,152 32,693	40,469 2,379	2,516,036 0	5,629,641 0
1701	Elementos químicos não-petroquímicos	5,194	2,388	11,220	6,145	221	874	52,093	2,579	0	0
1702	Álcool de cana e de cereais	114	52	246	135	5	19	276,717	20,136	0	0
1801	Gasolina pura	0	0	0	0	0	0	0	0	0	0
1802	Óleos combustíveis	4,222	25,341	6,785	10,094	1,272	10,152	7,684	21,137	68,607	397,989
1803 1804	Outros produtos do refino Produtos petroquímicos básicos	5,171 7,610	2,377 3,498	11,170 16,438	6,117 9,003	220 324	870	14,594 0	1,062	37,736 0	84,436 0
1805	Resinas	27,657	3,496 12,714	59,741	32,718	324 1,179	1,280 4,653	0	0	0	0
1806	Gasoálcool	824	379	1,781	975	35	139	158,915	11,564	135,728	303,693
1901	Adubos	0	0	0	0	0	0	0	0	0	0
1902	Tintas	9,932	4,566	21,454	11,750	423	1,671	0	0	0	0
1903	Outros produtos químicos	5,576	2,563	12,045	6,597	238	938	0	0	0	0
2001 2101	Produtos farmacêuticos e de perfumaria Artigos de plástico	0 101,648	0 46,729	0 219,571	0 120,252	0 4,333	0 17,102	0 298,212	21,700	0 6,867	0 15,366
2201	Fios têxteis naturais	0	40,729	219,571	120,232	4,333	0	290,212	21,700	0,007	15,300
2202	Tecidos naturais	0	0	0	0	0	0	0	0	0	0
2203	Fios têxteis artificiais	0	0	0	0	0	0	0	0	0	0
2204	Tecidos artificiais	333	153	720	395	14	56	0	0	0	0
2205	Outros produtos têxteis	2,450	1,127	5,293	2,899 459	104	412 65	0	0 3,173	0 403	0
2301 2401	Artigos do vestuário Produtos de couro e calçados	388 70	178 32	838 152	459 83	17 3	12	43,607 35,090	2,553	403	902 0
2501	Produtos do café	0	0	0	0	0	0	0	2,000	0	0
2601	Arroz beneficiado	0	0	0	0	0	0	0	0	0	0
2602	Farinha de trigo	0	0	0	0	0	0	0	0	0	0
2603	Outros produtos vegetais beneficiados	0	0	0	0	0	0	0	0	0	0
2701 2702	Carne bovina Carne de aves abatidas	0	0	0	0	0	0	0	0	0	0
2801	Leite beneficiado	0	0	0	0	0	0	0	0	0	0
2802	Outros laticínios	0	0	0	0	0	0	0	0	0	0
2901	Açúcar	0	0	0	0	0	0	0	0	0	0
3001	Óleos vegetais em bruto	0	0	0	0	0	0	0	0	0	0
3002	Óleos vegetais refinados	0	0	0	0	0	0	0	0	0	0
3101 3102	Outros produtos alimentares inclusive rações Bebidas	1,080	496 0	2,332	1,277	46 0	182	0	0	0	0
3201	Produtos diversos	9,909	4,555	21,404	11,722	422	1,667	122,156	8,889	1,035,610	2,317,181
3301	Serviços industriais de utilidade pública	10,534	63,219	16,926	25,183	3,173	25,328	578,300	58,705	178,072	703,501
3401	Produtos da construção civil	7,018	3,226	15,159	8,302	299	1,181	511,777	37,240	73,550	164,567
3501	Margem de comércio	129,871	59,704	280,535	153,640	5,536	21,851	313,422	22,806	225,435	504,412
3601 3701	Margem de transporte Comunicações	65,817 85,818	30,257	142,172	77,863	2,806	11,074	1,526,731	111,094	336,923	753,867
3701 3801	Comunicações Seguros	85,818 1,096	39,452 504	185,375 2,367	101,524 1,297	3,658 47	14,439 184	2,899,091 43,305	47,780 1,323	642,445 4,108	1,961,304 28,579
3802	Serviços financeiros	53,145	24,431	114,798	62,871	2,266	8,942	1,124,124	81,798	209,371	468,469
3901	Alojamento e alimentação	1,995	917	4,309	2,360	85	336	547,019	39,804	20,886	46,732
3902	Outros serviços	9	4	19	10	0	1	765,245	55,684	155	347
3903	Saúde e educação mercantis	0	0	0	0	0	0	0	0	0	0
4001 4101	Serviços prestados às empresas Aluguel de imóveis	88,364 29,778	111,226 11,186	84,964 28,873	81,870 16,516	27,419 4,497	34,657 7,147	3,709,972 1,284,225	83,085 62,720	1,697,455 225,314	3,861,738 768,524
4101 4102	Aluguel de imoveis Aluguel imputado	29,778	11,186 0	28,873	16,516 0	4,497	1,147	1,284,225	62,720 N	225,314 0	768,524
4201	Administração pública	0	0	0	0	0	0	0	0	0	0
4202	Saúde pública	0	0	0	0	0	0	0	0	0	0
4203	Educação pública	0	0	0	0	0	0	0	0	0	0
4301	Serviços privados não-mercantis	0	0	0	-	0	164 909	-	180.020	0	1 522 997
Valor Total das I Margem de Tran		899,128 0	425,441 0	1,884,590 0	1,041,654 0	43,676 0	154,808 0	4,233,809 0	189,929 0	675,923 0	1,523,887 0
Margem de Com		0	0	0	0	0	0	0	0	0	0
Impostos sobre a		56,253	27,243	111,351	62,563	3,051	10,220	3,423,658	136,385	888,507	2,155,202
Salários		308,171	190,229	354,246	237,057	50,982	98,338	5,620,849	3,750,302	5,959,713	16,677,071
	al/FGTS (Contribuições sociais efetivas)	104,879	69,554	133,658	89,876	18,955	31,938	2,092,907	994,967	2,601,644	5,672,548
	da (Contribuições sociais efetivas)	7,323	4,479	10,563	5,341	227	1,196	157,973	11,495	12,163	27,214
		0	4,479	0	0	0	1,190	0		12,103	0
Contribuições soo							0		0		
Rendimento de a		0	0	0	0	0	0	0	0	1,966,327	4,399,667
Excedente opera	cional bruto (EOB)	901,800	414,569	1,947,977	1,066,847	38,443	151,729	27,871,923	464,639	6,455,849	12,740,858
Outros impostos :	sobre a produção	145,538	57,464	315,680	270,500	6,993	31,173	3,210,685	44,343	608,979	3,368,305
Outros subsídios	à produção	0	0	0	0	0	0	-62,477	-6,356	0	0
Valor da produça	ão	4,032,535	1,969,172	7,472,346	4,332,885	252,202	776,148	63,981,204	6,508,750	26,758,874	64,967,709