Elasticity of Substitution Between Capital and Labor: a Panel Data Approach

Samuel de Abreu Pessoa* Silvia Matos Pessoa† Rafael Rob‡

June 28, 2004

Abstract

This paper estimates the elasticity of substitution of an aggregate production function. The estimating equation is derived from the steady state of a neoclassical growth model. The data comes from the PWT in which different countries face different relative prices of the investment good and exhibit different investment-output ratios. Then, using this variation we estimate the elasticity of substitution. We use dynamic panel data techniques, which allow us to distinguish between the short and the long run elasticity and handle a host of econometric and substantive issues. In particular we accommodate the possibility that different countries have different total factor productivities and other country specific effects and that such effects are correlated with the regressors. We also accommodate the possibility that the regressors are correlated with the error terms and that shocks to regressors are manifested in future periods. Taking all this into account our estimation results suggest that the long run elasticity of substitution is 0.7, which is lower than the elasticity, 1, that is traditionally used in macro-development exercises. We show that this lower elasticity reinforces the power of the neoclassical model to explain income differences across countries as coming from differential distortions.

JEL Classification numbers: D24, D33, E25, O11, O47, O49

Key words: Demand for Investment, Dynamic Panel Data, Elasticity of Substitution.

*Graduate School of Economics (EPGE), Fundação Getulio Vargas, Praia de Botafogo 190, 1125, Rio de Janeiro, RJ, 22253-900, Brazil. Fax number: (+) 55-21-2553-8821. Email address: pessoa@fgv.br.
†Department of Economics, University of Pennsylvania, Email address: smatos@econ.ssc.upenn.edu.
‡Department of Economics, University of Pennsylvania, 3718 Locust Walk, Philadelphia, PA 19104-6297, USA. Fax number: (+) 1-215-573-2057. Email address: rrob@econ.sas.upenn.edu. NSF support under grant number 01-36922 is greatfully acknowledged.
1 Introduction

This paper estimates the elasticity of investment with respect to its price. To this end we use the Summers-Heston (1991, 2002) Penn World Table (PWT). The price of investment goods and the investment-output ratio in this table vary across countries and over time. Then, using this variation we estimate the elasticity of the investment-output ratio with respect to the price of investment goods. Assuming the data is generated by the neoclassical growth model, assuming that technological change is labor saving, and assuming the aggregate production function is C.E.S., our estimate is interpreted as the elasticity of substitution between capital and labor.

The main motivation for this exercise is that it helps assess whether differential “distortions” explain the huge per capita income differences that exist across countries of the world. The usual approach to this question is to view different countries as having different distortions to the capital accumulation decision, which are reflected in different prices of investment goods. Then prices of investment goods affect investment-output ratios (and thereby capital-worker ratios) and the latter affect, via the mechanics of the neoclassical growth model, per capita incomes. Whether this chain of causality links is quantitatively significant, i.e., whether it explains a sizable fraction of the variation of per capita incomes depends, naturally, on what aggregate production function one assumes. To this point most studies assume a Cobb-Douglas production function, where the elasticity of substitution is 1. On the other hand, the elasticity of substitution we estimate here is 0.7. Moreover, simulating the model, we show that a lower elasticity of substitution accentuates the effect of differential investment prices and thus that a greater fraction of the observed per capita income differences is accounted for as coming from differential prices of the investment good.

An important precursor to our work is the paper by Restruccia and Urittia (2001), where the hypothesis that the aggregate production function is Cobb-Douglas is accepted. The Restruccia and Urittia (2001) estimation procedure is predicated however on all countries having the same total factor productivity (TFP). Klenow and Rodriguez-Clare (1997), Hall and Jones (1999) and Romer (2001) (among others) argue that TFP varies considerably across countries and is correlated with investment and with per capita incomes. We take this possibility into account, allowing different countries to have different TFP’s (and other country specific effects) and allowing correlations to exist between TFP and per capita incomes. Once these possibilities are accounted for, we estimate the elasticity of substitution to be 0.7 and reject the hypothesis that it is 1. To corroborate this empirical finding we theoretically compute the bias that would occur if one were to ignore country specific effects. We find that the estimator of the elasticity of substitution is then biased upwards, which
explains why we obtain a lower estimate.

In somewhat greater detail we execute the following econometric exercises. The first exercise is to take annual panel data and derive a static estimate of the elasticity of substitution (which from this point onwards we call σ), taking into account country specific effects. This yields an estimate of 0.5. We suspect that the true value of σ is higher than 0.5 because the time intervals between observations are short (annual), while the relationship we estimate is a long run relationship. In addition and related to this, the error terms in the annual panel data set are serially correlated. We address this problem by taking long run averages of the variables. We constructed two panels that average the variables from the annual panel data set over 6 and 7 years. Using this averaged data we obtain new estimates for σ, using the within group two stage least square procedure. The numbers we get are $\sigma = 0.650$ (for the 6 year averages) and $\sigma = 0.674$ (for the 7 year averages). We also find, for both panels, that serial correlation is not a problem once the data is averaged. A third finding is that a Wald test rejects the Cobb-Douglas hypothesis $\sigma = 1$ at the 3% and the 10% significance levels, respectively.

To confirm these results we do a third exercise using recent methods developed by Arellano and his coauthors, see for example, Arellano and Bond (1991). We use the original, annual panel and apply dynamic panel estimation techniques to it. These techniques allow one to distinguish between the short and long run elasticities of substitution and to include all relevant variables. In addition these techniques allow one to accommodate shocks to the regressors that are manifested in future periods. Using these techniques, we obtain 0.69 for the long run σ for both the within group and the extended GMM procedures, and we reject the Cobb-Douglas hypothesis $\sigma = 1$ at the 10% significance level.

All in all, our conclusion is that the evidence points towards a σ that is around 0.7. This conclusion is further supported by the work of Collins and Williams (1999). These authors consider a data set comprising of OECD countries over the period 1870-1950. Then, performing cross country regressions (which do not control for country specific effects), they obtain an estimate of $\sigma = 0.7$. We have done the analogue of the Collins and Williams exercise (i.e., confined attention to OECD countries) with our data set and estimated σ to be close to 0.7 as well. This result agrees - naturally - with the results we get when we use a larger and, therefore, less homogenous set of countries, but when we control for country specific effects.

Traditionally the elasticity of substitution is estimated using industry (micro) data. Early examples include Arrow et al. (1961), using cross section data and Lucas (1969), using time series data. A recent study in the same tradition, employing static panel estimation
techniques and using U.S. cross-industry data is Chirinko (2002). As reported in that study
σ is somewhere between 0 and 1 and, most likely, between 0.5 and 1. The estimates we
obtain here are well within this range, which is the expected result (given that industry
studies are based on micro data and that our estimates are based on macro data).

As stated earlier, our interest in estimating σ stems from the fact that it determines the
quantitative effect that investment distortions have on per capita incomes. To illustrate this
point we simulate the model for several values of σ, and show how distortions affect per capita
incomes for each value of σ. These simulations show that the impact of distortions under
σ = 0.7 is significantly stronger (in a sense to be made precise below) than under σ = 1.
This improves the explanatory power of the neoclassical model (to explain income gaps as
coming from differential distortions) and suggests that policies that reduce distortions in
poor (highly distorted) countries are more effective than they would appear under σ = 1.0.
We also perform a development decomposition exercise à la Hall and Jones (1999) and show
that the correlation between per capita income and TFP is smaller under σ = 0.7 than under
σ = 1.0. Finally, as an application of our estimation results, we assess what portion of the
distortions that our model formulation is based on is reflected in the PWT.

The rest of the paper is organized as follows. Section 2 presents a theoretical model and
derives the equation that is to be estimated. Section 3 describes the econometric procedures
used for estimating this equation. The numerical results of our estimation are then reported
and discussed in Section 4. Section 5 calculates the bias in the regression that would occur
if one were to ignore the country specific effects. Section 6 conducts quantitative exercises,
illustrating how our estimation results are applied to the question of income gaps. Section 7
concludes.

2 Model Specification

2.1 Theoretical Model

We consider a two sector neoclassical growth model. Time is continuous and the horizon is
infinite.

Sector 1 produces a consumption good, using labor and capital. The per capita output
y_1 in this sector is
\[y_1 = A l_1 f(k_1), \] \hspace{1cm} (1)
where l_1 is the fraction of the labor force employed in sector 1, k_1 is the capital-labor ratio
in sector 1, A is total factor productivity and f is the C.E.S. production function specified
in (3).

Sector 2 produces an investment good, using labor and capital. The per capita output y_2 in that sector is

$$y_2 = ABl_2 f(k_2),$$

where B is an investment sector productivity parameter. The function f is specified as

$$f (k_i) = \left(1 - \alpha + \alpha k_i \frac{\sigma - 1}{\sigma - 1}\right)^{\frac{\sigma}{\sigma - 1}},$$

where σ is the elasticity of substitution between capital and labor and α is a parameter relating to income shares.

There is a continuum of identical, infinitely lived individuals in the economy that act as consumers, workers and owners of capital. The supply of labor of each individual is inelastic at 1 unit per unit time and there is no disutility from working. The measure of individuals is 1. Individuals take prices as given and make intertemporal consumption/savings decisions, where savings are effected by buying capital goods and renting them out to firms.

There is a continuum of profit maximizing, price taking firms that buy inputs (labor and capital services) from individuals and sell output back to individuals.

The lifetime utility of a representative individual is

$$\int_0^\infty e^{-\rho t} \frac{C_t^{1-\frac{1}{\gamma}}}{1-\frac{1}{\gamma}} \, dt,$$

where C_t is the date t consumption flow. ρ is the subjective, instantaneous rate of time preference and γ is the intertemporal elasticity of substitution.

Consider some fixed point in time, say t. Then at that point a representative individual receives the flow wage of w_t and the flow rental rate of q_t per unit of capital good that she rents out to firms. Let p_t be the price of the investment good. All prices are denominated in terms of the consumption good, which is the numeraire commodity. Then a representative individual faces the following budget constraints

$$C_t + p_t I_t = q_t K_t + w_t + x_t,$$

where K_t is the individual’s capital stock, I_t is the individual’s addition to this capital stock, and x_t is a lump-sum transfer (specified below).
The capital accumulation equation is
\[\dot{K}_t = I_t - \delta K_t, \] (6)
where \(\delta \) is the physical depreciation rate. The individual’s initial endowment of capital is exogenously specified and denoted by \(K_0 \).

If we substitute (6) into (5) we get
\[p_t \dot{K}_t - (q_t - \delta p_t) K_t = w_t + x_t - C_t. \] (7)
It is convenient to introduce the interest rate
\[r_t = \frac{q_t - \delta p_t}{p_t} = \frac{q_t}{p_t} - \delta. \] (8)
Then, maximizing (4) subject to the budget constraints (7), one gets the Euler equation
\[\frac{\dot{C}_t}{C_t} = \gamma (r_t - \rho). \] (9)

We are going to focus on a steady state, where \(\dot{C}_t = 0 \) and where investment is solely used to replace depreciating capital.

To this economy we add distortions that come either from government policy or from “institutional” considerations (cultural, historical and sociological features of real life economies). The effect of these distortions is to drive a wedge between the equilibrium prices that would have prevailed in their absence and the prices that agents (individuals and firms) actually face. To determine the prices that agents face, we first find the prices that would have prevailed in the absence of distortions. Then we tack on distortions to these prices.

As stated above, we focus on a steady state. Then equilibrium prices are time invariant. Since any input combination that produces one unit of the consumption good, produces \(B \) units of the investment good, the relative price of capital is
\[p = \frac{1}{B}. \]
Given this, the rental rate of capital is \(q = Af'(k) \), the interest rate is \(r = ABf'(k) - \delta \) and the wage rate is \(w = A [f(k) - kf'(k)] \).

Next we consider distortions. The government imposes a tax on the investment good at
the rate of τ_I or, alternatively, imposes a tariff on the importation of investment goods in case the economy is open.\footnote{Considering an open economy requires slight notational modifications. However, the equation to be estimated in the end is the same.} In addition, the government imposes a tax on capital income at the rate of τ_K. An alternative interpretation of τ_K is that it is the fraction of earnings that organized crime extorts from owners of capital. Or τ_K maybe money that owners of capital must pay to corrupted government officials to be able to run their businesses (which, in effect, means that capital income is taxed). Whatever the interpretation of these tax rates, the investment tax and the capital income tax are returned to individuals in the form of lump sum transfers and appear as x_t in the individual budget constraints.

As a consequence of these distortions, individuals pay

$$p = \frac{T_I}{B} \equiv 1 + \tau_I$$

for the investment good, and receive

$$q = \frac{Af'(k)}{T_K} \equiv (1 - \tau_K)Af'(k)$$

as net rental rate on capital.

Combining (8) and (9) we have that

$$r = \frac{q}{p} - \delta = \frac{Af'(k)}{T_K} \frac{1}{p} - \delta = \rho,$$

which implies

$$f'(k) = p \frac{T_K}{A} (\rho + \delta) = \frac{T_I T_K}{B A} (\rho + \delta).$$

(11)

Now, since f exhibits a constant elasticity of substitution, (3) implies

$$\frac{k}{f(k)} = \left(\frac{f'(k)}{\alpha} \right)^{-\sigma}. \tag{12}$$

Substituting (11) into (12), we get

$$\frac{k}{f(k)} = \left[\frac{T_I T_K \rho + \delta}{BA \alpha} \right]^{-\sigma}. \tag{13}$$

Next we compute national income statistics at the steady state. The per capita GDP of
the economy y is defined as

$$y = y_1 + \frac{y_2}{B}.$$

Using (1) and (2) and substituting the equilibrium condition for the labor market, $l_1 + l_2 = 1$, we see that $y = Af(k)$, where k is the stock of capital per capita. Then, using the fact that the steady state investment, δk, is equal to sector 2’s output, $ABl_2f(k)$, the economy’s resource constraint is

$$y = Af(k) = c + \text{inv} = c + \frac{\delta k}{B},$$

where ‘inv’ is the per capita flow of investment goods (we reserve the letter i for the investment-output ratio).

2.2 Taking the Model to Data

This completes the derivations of theoretical relationships that hold for a single economy. Let’s consider now a cross section of economies, indexed by j. Each economy is characterized by its own TFP parameter A_j, its own investment sector productivity parameter B_j, and its own distortions $T_{1,j}$ and $T_{K,j}$. To make consumption, investment and GDP comparable across countries we evaluate them in terms of international prices\(^2\) and, without loss of generality, we let the international price of investment be one.\(^3\) Then, if i_j is the steady state investment-output ratio in country j, (14) tells us that

$$i_j \equiv \frac{\text{inv}_j}{y_j} = \frac{\delta k_j}{A_j f(k_j)}.$$

Substituting (13) into (15), the long run investment-output ratio is

$$i_j = \frac{\delta}{A_j} \left[p_j \frac{T_{K,j}}{A_j} \rho + \delta \right]^{-\sigma}.$$

Taking logarithms on both sides of equation (16), we get a log-linear relationship between the relative price of capital and the investment-output ratio

$$\ln i_j = \ln F E_j - \sigma \ln p_j,$$

\(^2\)The issue here is that the investment-consumption price ratios are not equal across countries. We adopt the procedure developed by Restrustica and Urittia (2001) to address this issue.

\(^3\)We do this by re-defining the unit of measurement for the investment good.
where

\[
\ln FE_j \equiv \ln \left[\delta \left(\frac{\alpha}{\rho + \delta + \frac{1}{TK,j}} \right)^{\sigma} \right] - (1 - \sigma) \ln A_j. \tag{18}
\]

\(FE_j\) is referred to as the \(j\)th economy fixed effect.

In Sections 3 and 4 we estimate the long run relationship (17). As stated in the introduction, several studies indicate that total factor productivity (\(A\)) and thus the fixed effect (\(FE\)) is correlated with investment and output. In the language of our formulation, this may come from correlations between \(A\) and \(T_I\) or \(B\); it has been argued, for example, that high productivity economies happen also to be less distorted. It may also come from correlation between \(T_K\) and \(T_I\) or \(B\); for example, distortions to capital creation may be related to distortions to capital remuneration. If such correlations exist, then the fixed effect is correlated with prices and if this correlation is ignored, the estimation results are going to be biased. In estimating (17) we take the possibility that such correlations exist into account.

Before we proceed to the estimation, we note that our results apply beyond the particular model we presented above. In particular, if there is population growth at the rate \(n\) and disembodied, labor-augmenting technological progress at the rate \(g\), equation (18) is replaced by

\[
\ln FE_j \equiv \ln \left[\delta_{EF} \left(\frac{\alpha}{\rho + \delta + \frac{g}{TK,j}} \right)^{\sigma} \right] - (1 - \sigma) \ln A_j,
\]

where

\[
\delta_{EF} \equiv \delta + g + n.
\]

Equation (17) remains intact. Then the estimation procedure is identical to the one we present here.

A more far reaching extension is to an environment in which technological progress is embodied and firms periodically upgrade their capital stocks. As we show elsewhere (see Pessoa and Rob (2003)) the relationship between the price of capital \(p\) and the investment-output ratio is, to a large degree of approximation, the same as (18). Then using the theoretical derivations that give rise to this relationship and using the estimated values of parameters (as we find them here) one infers the values of underlying parameters in the model with embodied technological progress.

One last item of business before we proceed to the estimation is to relate the above formulation to certain studies in the macro-development tradition. Jones (1994) advanced the hypothesis that income gaps among countries are due to distortions and used investment prices from the PWT to empirically assess this hypothesis. The premise underlying Jones (1994) exercise is that investment prices (in the PWT) reflect distortions and therefore that
differences in the relative price of investment across countries come from differential distortions. Parente and Prescott (2000) and more recently Hsieh and Klenow (2003) advance the alternative hypothesis that investment price differences are due to differential productivities of the investment good sector. Although we are not trying to resolve the question how to interpret the relative price of investment in the data, our formulation encompasses both views. \(T_i \) and \(T_k \) reflect distortions while \(B \) reflects differential productivity. Correspondingly, our estimation results and the quantitative exercises we perform can be interpreted from either point of view.

3 Empirical Implementation

Our ultimate goal is to estimate the long run price elasticity of investment demand, i.e., the parameter \(\sigma \) in equation (17). Somewhat imprecisely, we also refer to \(\sigma \) as the price elasticity of demand for investment goods. Assuming that all countries share a common value for \(\sigma \), the investment demand is the same for all countries apart from a country specific effect (or an “intercept”), which comes either from differences in TFP \(A_j \) or from the policy/institutional variable, \(T_{k,j} \), or both. These country specific effects are subsumed in the fixed effect term (18). To account for these effects as well as to distinguish between short run and long run price elasticities, we employ (among other things) dynamic panel data techniques.

Dynamic panel data techniques are advantageous in our context for three reasons. First, the regression analysis relies on data that exhibit greater variability as compared to pure time series or pure cross section data. Second, panel data techniques allow us to identify country specific effects, which would have been impossible if we were to use pure cross section techniques. Third, using dynamic panel data techniques, we are able to distinguish between the short and long run price elasticities of demand for investment.

For completeness and to verify the plausibility of dynamic panel data techniques, we work with two econometric specifications. In the first static specification, the lagged dependent and the lagged independent variables are not included on the RHS of the regression equation. In the second dynamic specification these lagged variables are included. The next two subsections describe these specifications and the econometric exercises that we perform on them.

3.1 Static Panel

Based on the theory above, see equation (17), we consider the following static specification of the demand for investment
\[
\ln i_{jt} = \ln FE_j + \beta_0 \ln p_{jt} + \varepsilon_{jt},
\]
(19)

\[
\varepsilon_{jt} \sim \text{iid}(0, \sigma^2_{\varepsilon}),
\]

\[
j = 1, 2, ..., N,
\]

\[
t = 1, 2, ..., T,
\]

where \(\ln FE_j\) is an unobserved time invariant country specific effect, \(\varepsilon_{jt}\) is an error term, subscript \(j\) is a country index and subscript \(t\) is a time index. \(N\) is the number of countries in our sample and \(T\) is the number of time periods. Depending on the exercise (see below) the time period is either one year or an average over either 6 or 7 years. \(\beta_0\) is the same as \(\sigma\) in Section 2.

If we use the original, annual data set, four issues need to be addressed. First, we need to determine whether to use estimation techniques that consider the country specific effect as a fixed-effect (FE) or as a random-effect (RE). Second, we need to account for the possibility that error terms are heteroskedastic, i.e., that they have different variances for different countries. Third, we need to account for the possibility that the explanatory variable \(\ln p_{jt}\) is correlated with the error term \(\varepsilon_{jt}\) (the so called endogeneity issue). Fourth, we need to test and correct for the possibility that error terms are serially correlated. We describe now how each of these issues is dealt with.

- FE versus RE. The FE model is estimated by the Within Group estimator (WG). To do that we first average equation (19) over time to get the cross section equation

\[
\ln \bar{i}_j = \ln FE_j + \beta_0 \ln \bar{p}_j + \bar{\varepsilon}_j,
\]
(20)

where \(\ln \bar{i}_j = \frac{1}{T} \sum_{t=1}^{T} \ln i_{jt}\), \(\ln \bar{p}_j = \frac{1}{T} \sum_{t=1}^{T} \ln p_{jt}\) and \(\bar{\varepsilon}_j = \frac{1}{T} \sum_{t=1}^{T} \varepsilon_{jt}\). Second we subtract equation (20) from (19) for each \(t\), which gives a transformed equation. Third we run an OLS regression on the transformed equation. The RE model, on the other hand, is estimated by the GLS random effects estimator. This procedure is more involved so we refer the interested reader to Baltagi (1995), Chapter 2, where it is fully described.

Comparing the two procedures, the GLS random effect estimator is more efficient, but it yields consistent estimates only if the country specific effects are not correlated with the regressors. On the other hand, the FE estimator is consistent regardless of the correlation between the country specific effects and regressors. To find out
which estimator is more appropriate we apply a Hausman test to determine whether
the difference between the estimated parameters according to these two procedures
is small or large. If the difference is large, then we conclude that there is correlation
between the country specific effects and the regressors, and we adopt the FE estimator.

- Heteroskedasticity. In order to deal with heteroskedasticity, we report the consistent
standard error of the WG estimator. The advantage of this standard error, which has
been derived in Arellano (1987), is that it is robust to heteroskedasticity.4

- Correlation between the explanatory variable and the error terms. We relax the com-
monly held assumption that \(\ln p \) is strictly exogenous, which means that it may be
correlated with \(\varepsilon \) for some leads and lags. To account for that possibility, we let the
lagged value of the regressor be an instrument. Then, to assess whether \(\ln p_{jt-1} \) and
\(\varepsilon_{jt} \) are correlated, we apply the Sargan test of over identifying restrictions.

- Serial correlation of error terms. Given that we use a static specification and that
we work with annual data, it is possible that the error terms are serially correlated.
Most notably, this may occur because relevant variables are omitted. To check for
that, we apply a first order serial correlation test. If this test indicates the presence
of serial correlation, one can remedy this by explicitly allowing for serial correlation.
One commonly used remedy is to assume that error terms are AR(1) correlated

\[
\varepsilon_{jt} = \rho \varepsilon_{jt-1} + \nu_{jt},
\]

\[
\nu_{jt} \sim iid(0, \sigma^2_\nu).
\]

Then under this AR(1) assumption the estimation procedure is carried out as follows.
First, the AR(1) coefficient, \(\rho \), is estimated using the residuals from WG estimation.
After estimating \(\rho \), the data is transformed and the AR(1) component is removed.
Finally, the WG estimator is applied to the transformed data.

A potential problem with this remedy is that it is very limited. It assumes a particular
form of serial correlation and it does not deal directly with the source of the serial

4The formula for the consistent standard error of the WG estimator of \(\hat{\beta}_0 \) is

\[
\text{var}(\hat{\beta}_0) = (\mathbf{X}'\mathbf{X})^{-1}(\sum_{j=1}^{N} \mathbf{X}'_j \hat{\varepsilon}_j \hat{\varepsilon}'_j \mathbf{X}_j)(\mathbf{X}'\mathbf{X})^{-1},
\]

where \(\mathbf{X}_j = \ln p_j - \ln \mathbf{p}_j \), \(\hat{\varepsilon}_j = (\ln i_j - \ln \mathbf{i}_j) - \hat{\beta}_0(\ln p_j - \ln \mathbf{p}_j) \) and all bold face variables are \(T \times 1 \) vectors.

As Arellano (1987) shows, this standard error formula is valid under the presence of any heteroskedasticity
or serial correlation in the error terms - as long as \(T \) is small relative to \(N \).
correlation, namely the omission of relevant variables. We show these limitations below by comparing the regression equation that an AR(1) transformation produces with the regression equation that one gets with a more general formulation, i.e., a formulation in which no variables are omitted.

All this describes the issues that arise if one uses the original annual data set. One way to get around these issues is to create a new, low frequency data set. This is done by averaging the original data over (say) six or seven year disjoint time blocks. Then, one estimates the static equation (19), where each time period is one of these blocks. The downside of this estimation strategy is that it reduces the number of data points available as inputs into the regression analysis and thus reduces the efficiency of estimators.\footnote{Another commonly used approach in the macroeconometrics literature is to ‘smooth’ the data. That approach however distorts the available information and has been widely criticized by econometricians.} The upside is that the estimates one gets are long run estimates (which is what we are interested in) and that they are unbiased. Chirinko et al. (2002) provide a detailed description of this ‘averaging’ estimation strategy. We pursue this strategy in our context and report estimation results for it.

An alternative estimation strategy is to keep using the original annual data set but enrich the econometric specification to cope with the above four issues. Recall that our goal is to estimate the long run price elasticity of investment demand. The problem we run into is that the data presents us with short run fluctuations of the price of investment goods and with consequent short run adjustments to them. If we use the static specification (19), these short run adjustments introduce correlations between contemporaneous investment, the lagged values of investment, and the lagged values of prices. To cope directly with these correlations we abandon the static formulation (19), introduce a dynamic formulation into which these lagged values are integrated and then estimate the dynamic formulation. We describe this approach in the next subsection.

3.2 Dynamic Panel

The dynamic econometric specification is

\[
\ln i_{jt} = \ln FE_j^D + \beta_1 \ln i_{jt-1} + \beta_2 \ln p_{jt} + \beta_3 \ln p_{jt-1} + \epsilon_{jt},
\]

\[\epsilon_{jt} \sim iid(0, \sigma^2_{\epsilon}).\]
where $\ln FE_j^D$ are unobserved time invariant country specific effects, superscript ‘D’ stands for dynamic and ϵ_{jt} are the error terms.6

The parameter β_2 in equation (22) is interpreted as the short run price elasticity of investment demand. The corresponding long run price elasticity is derived from (22) by setting $\epsilon_{jt} = 0$, $\ln i_{jt} = \ln i_{jt-1}$ and solving the resulting relationship between $\ln i$ and $\ln p$. Then the long run price elasticity is7

$$\beta_{LR} = LR(\beta_1, \beta_2, \beta_3) \equiv \frac{\beta_2 + \beta_3}{1 - \beta_1}. \tag{23}$$

Econometrically (22) is estimated via OLS and WG techniques, as in section 3.1, and also via Generalized Method of Moments (GMM) techniques. For a detailed description of GMM techniques see Chamberlain (1984), Holtz-Eakin, Newey and Rosen (1988), Arellano and Bond (1991), Arellano and Bover (1995), and Blundell and Bond (1998a).8

Applying GMM techniques to the problem at hand, we report estimation results following two approaches. In the first approach, which is based on Arellano and Bond (1991), country specific effects are eliminated by taking first differences of the regression equation.9 Applying this to (22), we get

6The dynamic specification (22) is related to the static specification (19) with AR(1) error terms as follows. Substituting (21) into (19), the AR(1) regression equation is written as

$$\ln i_{jt} = (1 - \rho) \ln FE_j + \rho \ln i_{jt-1} + \beta_0 \ln p_{jt} - \beta_0 \rho \ln p_{jt-1} + \nu_{jt},$$

where

$$\nu_{jt} \sim iid(0, \sigma^2_\nu).$$

Then, if we set $\beta_1 = \rho$, $\beta_2 = \beta_0$, $\beta_3 = -\beta_0 \rho$ and $\ln FE_j^D = (1 - \rho) \ln FE_j$, this regression equation is the same as (22). In general, however, (22) contains three parameters whereas (19) with AR(1) error terms contains only two. Therefore, (19) with AR(1) is a (very) special case of (22).

7A limitation of the static specification (19) with AR(1) error terms is now revealed: It does not allow one to distinguish between the short and long run price elasticities of investment demand. By the equation in the foregoing footnote and by (23), both elasticities are equal to β_0. Indeed

$$\beta_{LR}^{AR(1)} = \frac{\beta_2 + \beta_3}{1 - \beta_1} = \frac{\beta_0 - \beta_0 \rho}{1 - \rho} = \beta_0.$$

8Details concerning how these GMM techniques are applied to the problem at hand are found in Appendix A.

9Subtracting the average as we do with the WG estimator of the static panel is not going to work here. This is because the transformed lagged dependent variable and the transformed error terms are correlated, and this correlation does not vanish as the number of data points increases to infinity. This is shown in Nickell (1981).
\[\ln i_{jt} - \ln i_{jt-1} = \beta_1 (\ln i_{jt-1} - \ln i_{jt-2}) + \beta_2 (\ln p_{jt} - \ln p_{jt-1}) \]
\[+ \beta_3 (\ln p_{jt-1} - \ln p_{jt-2}) + \epsilon_{jt} - \epsilon_{jt-1}. \]

(24)

Assuming that the \(\epsilon_{jt} \)'s are serially uncorrelated (i.e., that \(E(\epsilon_{jt}\epsilon_{js}) = 0 \) for \(t \neq s \)), \(\ln i_{jt-s} \) are valid instruments in these first differenced equations if \(s \geq 2 \). Then using these instruments we get the following \(T-3 \) moment restrictions

\[E(\ln i_{jt-s}(\epsilon_{jt} - \epsilon_{jt-1})) = 0 \quad \text{for } s \geq 2 \text{ and } t = 3, \ldots, T. \]

(25)

Assuming furthermore that \(\ln p \) is weakly exogenous,10 we get additional moment restrictions

\[E(\ln p_{jt-s}(\epsilon_{jt} - \epsilon_{jt-1})) = 0 \quad \text{for } s \geq 2 \text{ and } t = 3, \ldots, T. \]

(26)

Arellano and Bond (1991) developed a consistent estimator, which is referred to as GMM-DIF, for this first difference approach. This estimator works well when the instruments are highly correlated with the regressors. Blundell and Bond (1998a) show via Monte Carlo simulations that if \(\beta_1 \) is close to 1 (and in our case it is), then the lagged values of variables are weak instruments for the corresponding differenced variables, causing the asymptotic and the small sample performance of the GMM-DIF estimator to be poor.11 Blundell and Bond also show that the GMM-DIF estimator of \(\beta_1 \) exhibits a downward asymptotic bias and large standard errors in small samples.12 Furthermore, recent empirical work (See Blundell and Bond (1998b), Loyaza, Schmidt-Hebbel and Serven (2000) and Bond, Hoeffer and Temple (2001)) shows that the estimate of \(\beta_1 \) under GMM-DIF is close to the estimate of \(\beta_1 \) under WG estimation, which, as we discuss later, is biased downwards. This empirical work also

10 The assumption of weak exogeneity of \(\ln p_{jt} \) is that \(E(\epsilon_{js}\ln p_{jt}) = 0 \) for \(s > t \).

11 Although the autocorrelation of the \(\ln i_{jt} \) series is sufficiently below 1 that we can reject the unit root hypothesis (see below), \(\ln i_{jt} \) are still positively and highly correlated, i.e., \(\beta_1 \) is positive and ‘large.’ Because of that, the instrumental variables for \(\ln i_{jt-2} \), \(\ln i_{jt-3} \), ..., \(\ln i_{jt-1} \) are weak instruments i.e., they are not strongly correlated with the regressors, and this poses problems for applying the GMM-DIF estimator.

12 Blundell and Bond (1998a) evaluate the performance of the GMM-DIF estimator via Monte Carlo simulations. In particular, they consider the pure AR(1) case

\[y_{it} = \eta_i + \alpha y_{it-1} + v_{it}. \]

Then, they illustrate their results with a dynamic labor demand equation, which includes wage and capital stock as explanatory variables

\[n_{it} = \eta_i + \alpha n_{it-1} + \beta_0 w_{it} + \beta_1 w_{it-1} + \gamma_0 k_{it} + \gamma_1 k_{it-1} + v_{it}. \]
points out that GMM-DIF estimators are inefficient, i.e., the standard errors of the estimates are large.

To overcome these biases and imprecisions we pursue a second, ‘system’ approach, referred to as GMM-SYS (or extended GMM) estimation. This approach combines, in a system, regressions in differences with regressions in levels, as in Arellano and Bover (1995). The work of Blundell and Bond (1998a) shows - theoretically and via Monte Carlo simulations - that the level restrictions under GMM-SYS are informative in cases where the first differenced instruments are not (even if \(\beta_1 \) is large). In addition the empirical work mentioned above shows that standard errors under GMM-SYS are smaller than under GMM-DIF.

This GMM-SYS estimator works as follows. The instruments for the regression in differences are the lagged values of the corresponding level variables as before. Symmetrically, the instruments for the regression in levels are the lagged differences of the corresponding variables. These are suitable instruments under the additional condition that there is no correlation between the differences of the right hand side variables and the country specific effects, which is written as 13

\[
E((\ln i_{jt-1} - \ln i_{jt-2}) \ln FE_j^D) = 0 \\
E((\ln p_{jt-1} - \ln p_{jt-2}) \ln FE_j^D) = 0.
\]

Then, adding to this the standard condition that \(E((\ln i_{jt-1} - \ln i_{jt-2})\epsilon_{jt}) = 0 \) and \(E((\ln p_{jt-1} - \ln p_{jt-2})\epsilon_{jt}) = 0 \), we get the following additional moment restrictions 14

\[
E((\ln i_{jt-1} - \ln i_{jt-2})(\ln FE_j^D + \epsilon_{jt})) = 0 \quad \text{for} \quad t = 3, \ldots, T, \quad (27)
\]
\[
E((\ln p_{jt-1} - \ln p_{jt-2})(\ln FE_j^D + \epsilon_{jt})) = 0 \quad \text{for} \quad t = 3, \ldots, T. \quad (28)
\]

Another advantage of the system GMM over the first-difference GMM estimator is that

13 This assumption doesn’t require that there is no correlation between the levels of \(\ln p_{jt} \) and \(FE_j^D \). Instead, this assumption follows from the stationarity property

\[
E(\ln i_{jt+m} \ln FE_j^D) = E(\ln i_{jt+n} \ln FE_j^D) \quad \text{for any} \quad m \quad \text{and} \quad n,
\]
\[
E(\ln p_{jt+m} \ln FE_j^D) = E(\ln p_{jt+n} \ln FE_j^D) \quad \text{for any} \quad m \quad \text{and} \quad n.
\]

14 Arellano and Bover (1995) show that further lagged differences would result in redundant moment restrictions if all available moment restrictions in first differences are exploited.
it allows us to study not only the time series relationship (between price and demand for investment) but also their cross section relationship.15 In any event, we report estimation results for both GMM-DIF and GMM-SYS.

To assess the empirical results of GMM-DIF and GMM-SYS, we apply two specification tests proposed by Arellano and Bond (1991). The first specification test is the Sargan test of over identifying restrictions, which tests for the overall validity of the instruments. The second test examines the hypothesis that the ε_{jt} are not second order serially correlated.16

We also test the validity of the additional instruments in the level equations. The set of instruments used for the equations in GMM-DIF is a subset of that used in GMM-SYS, so a test of these extra instruments is naturally defined. We apply a “difference” Sargan test by comparing the Sargan statistic for the GMM-SYS estimator and the Sargan statistic for the corresponding GMM-DIF estimator.

Measurement Error. So far we assumed that variables are measured without errors. Measurement errors are not unlikely for our data set but, fortunately, our procedures are easily extended to cope with them. Specifically, suppose that $\ln i_{jt}$ and $\ln p_{jt}$ are not directly observed and that instead we observe

\begin{align*}
\ln \bar{i}_{jt} &= \ln i_{jt} + m^i_{jt}, \\
\ln \bar{p}_{jt} &= \ln p_{jt} + m^p_{jt},
\end{align*}

where m^i_{jt} and m^p_{jt} are measurement errors that are uncorrelated with all of $\ln i_{jt}$ and $\ln p_{jt}$ and that are uncorrelated over time. Then, if one substitutes $\ln i_{jt}$ and $\ln p_{jt}$ from equation (29) into equation (24), one gets

\begin{align*}
\bar{\varepsilon}_{jt} - \bar{\varepsilon}_{jt-1} &= \varepsilon_{jt} - \varepsilon_{jt-1} + m^i_{jt} - m^i_{jt-1} - \beta_1(m^i_{jt-1} - m^i_{jt-2}) \\
&\quad - \beta_2(m^p_{jt} - m^p_{jt-1}) - \beta_3(m^p_{jt-1} - m^p_{jt-2}).
\end{align*}

By the condition that the measurement errors are uncorrelated over time,17 we obtain the

15The GMM-DIF estimator eliminates the unobserved fixed effects, while regression in levels does not.

16By construction, it is likely that $E((\varepsilon_{jt} - \varepsilon_{jt-1})(\varepsilon_{jt-1} - \varepsilon_{jt-2})) \neq 0$. Therefore, even if the original error terms are not serially correlated, the differenced error terms are, which means that the hypothesis that they are not serially correlated would likely be rejected.

17Alternatively, we could assume that measurement errors follow a moving average process of order 1. In that case we would use instruments that are lagged one more period than what would be necessary if measurement errors were serially uncorrelated.
following moment restrictions

\[
E(\ln \tilde{i}_{jt-s}(\overline{c}_j - \overline{c}_{j-1})) = 0 \quad \text{for } s \geq 3 \text{ and } t = 4, \ldots, T,
\]

\[
E(\ln \tilde{p}_{jt-s}(\overline{c}_j - \overline{c}_{j-1})) = 0 \quad \text{for } s \geq 3 \text{ and } t = 4, \ldots, T,
\]

\[
E((\ln \tilde{i}_{jt-2} - \ln \tilde{i}_{jt-3})(\ln FE_{jt} + \overline{e}_j)) = 0 \quad \text{for } t = 4, \ldots, T,
\]

\[
E((\ln \tilde{p}_{jt-2} - \ln \tilde{p}_{jt-3})(\ln FE_{jt} + \overline{e}_j)) = 0 \quad \text{for } t = 4, \ldots, T.
\]

Once we have these moment restrictions we apply GMM estimation, following the same steps as before. Specification tests for the validity of the instruments are analogous too.

4 Data and Results

The data we use comes from the Penn World Table, PWT 6.0 (Heston et al. 2002). To balance the data, we extracted a sub-sample of 113 countries, observed over 37 years, from 1960 to 1996. Table 1 at the end of the paper lists all the countries in our sample. The relative price of investment that we use is the ratio of the 1996 international price level of investment, PWT variable \(pi\), and the 1996 international price level of consumption, PWT variable \(pc\). The investment-output ratio is the investment share of real GDP per capita evaluated at 1996 international prices, PWT variable \(ki\).

We also constructed two ‘average’ panel data sets, derived from the above raw data. In the first panel we averaged the data over six disjoint time blocks with six years in each block: 60-65, 66-71, 71-77, 78-83, 83-89, and 90-95. Each block \(t\) is considered one time period and we have six time periods altogether, \(T = 6\). In the second panel we averaged the data over five disjoint blocks with seven years in each block: 60-66, 67-73, 74-80, 81-88 and 89-96. Then we have five time periods altogether, \(T = 5\).

As a first step we checked whether the \(\ln i_{jt}\) and the \(\ln p_{jt}\) series are stationary. To do that, while accounting for possible trends we ran the regressions

\[
\ln i_{jt} = \delta_0 + \delta_1 t + \rho_1 \ln i_{jt-1} + \nu_{jt}
\]

\[
\ln p_{jt} = \delta_2 + \delta_3 t + \rho_2 \ln p_{jt-1} + \mu_{jt},
\]

using the STATA module \texttt{xtdfest}.\footnote{We thank Luca Nunziata for kindly providing us with this module.} Based on these regressions we test for stationarity, using the Fisher version of the Dickey-Fuller test under the assumption of no cross country
correlation among the errors. We have chosen the Fisher test because, as shown in Madalla and Kim (1998), it is more robust than other tests to violations of the no correlation assumption. Applying this test we find that non-stationarity is rejected, i.e., we reject the hypotheses $\rho_1 = 1$ and $\rho_2 = 1$. Therefore our series reflect stationary fluctuations around (perhaps) a deterministic trend. This allows us to proceed with the statistical procedures below.

Having done that, we present estimation results for the price elasticity of investment demand. As a matter of convention, our estimates are discussed as positive numbers, which means they should be interpreted as the absolute values of the actual elasticities (the tables report them as negative numbers). The overall conclusion that emerges from our analysis is that the estimates of the long run price elasticity are, for the most part, between 0.5 and 1. They tend to equal 1 when country specific effects are ignored and this is true regardless of whether we use static or dynamic panel techniques and whether we control for the endogeneity of the regressor (price) or not. At the other end of the spectrum, the estimates tend to be close to 0.5 when country specific effects are taken into account but when serial correlation or, more generally, dynamic linkages are ignored. When both dynamic linkages and country specific effects are controlled for, then, depending on the particular procedure we use, the estimates fall somewhere between 0.5 and 1, and in the majority of cases are close to 0.7. The order of presentation of these estimates follows the order of presentation of the econometric specifications in Section 3.

4.1 Static Panel

4.1.1 Annual panel data

Table 2 reports estimation results for the static specification (19), using our raw annual data. In column [1] we report the results of an OLS regression and in column [2] the results of a 2SLS regression. Both regressions do not control for country specific effects. The first regression ignores price endogeneity as well, while the second regression does not. As can be seen, the estimated price elasticity in columns [1] and [2] is around 1. Whether we control or do not control for price endogeneity, the Wald test does not reject the hypothesis that the price elasticity = 1. This result agrees with the results of Restuccia and Urittia (2001) who, likewise, do not control for country specific effects.

These results change dramatically when country specific effects are controlled for. This

\footnote{All results in Tables 2, 3, 4 and 5 are computed using Stata 7.0. The test of first order serial correlation is taken from the DPD98 software for GAUSS developed by Arellano and Bond (1998).}
can be seen in columns [3]-[7], which report regression results when fixed effects are (potentially) different across countries. The reported estimates in these columns are all well below 1, and actually close to 0.5. In particular, the WG regression [3] yields price elasticity of 0.522 and, correcting for price endogeneity in column [4], we get a slightly higher estimate, 0.558. The Sargan tests of over identifying restrictions for the 2SLS regressions, columns [2] and [4], do not indicate a problem with the validity of instrumental variables.

In column [6] we check for first order serial correlation, AR(1), of the error terms - continuing to control for country specific effects (i.e., running a WG regression). We find strong and positive serial correlation. The estimated AR(1) coefficient ρ is high, 0.725, and the Bhargava et al. (1982) Durbin Watson test rejects $\rho = 0$. The estimate of the price elasticity in this column, 0.385, appears excessively low. Recall however that when error terms are AR(1) correlated, the short and long run price elasticities are constrained to be equal (see footnote 9). Since the short run elasticity is smaller than the long run elasticity we interpret this estimate for β_0 as an average between the short and long run elasticities. A more satisfactory approach obviously is to explicitly distinguish between the short run and long run elasticities in the econometric specification, which we do below.

Column [7] of Table 2 reports regression results when country specific effects are treated as random effects, i.e., when equation (19) is estimated via GLS with random effects. The estimate we get then, 0.566, is sufficiently different from the WG estimate we get under a fixed effect treatment, 0.522. Because of that the Hausman test rejects the hypothesis of no correlation between the fixed effects and the regressors. Consequently, we consider country specific effects as fixed effects from this point onwards.

The net result from all this is that working with the static specification and with annual data is inappropriate. Error terms are serially correlated, when we naively correct for them via AR(1) we get excessively low estimates of the price elasticity, and short run and long run elasticities are not distinguished. This suggest we should consider either transformed data or an alternative specification. We first present results for transformed (i.e., averaged) data. Then we present results for the dynamic specifications.

4.1.2 Average panel data

Table 3 presents the results for the 6 and 7 year average panels. The first thing to note here, see columns [1], [2], [5], and [6], is that, when the fixed effect is constrained to be equal across countries, the price elasticity is still around 1. Therefore averaging the data may (and as we shall see, does) remedy for serial correlation, but it is no panacea for ignoring country specific effects. The second thing to note is that the estimates in the remaining columns are
larger than the corresponding estimates in Table 2 but are still significantly lower than 1. And the third thing to note is that accounting for price endogeneity here makes a bigger difference than in Table 2, i.e., it increases the estimates by a bigger margin. In the end, when we control both for country specific effects and for price endogeneity, we get 0.650 for the six year average (column [4]) and 0.674 for the seven year average (column [8]).

Another thing we did was to check whether the addition of a time variable makes a difference. To do that we re-ran the previous regressions with time dummies. The results are shown in Table 4. As this table shows, if we do not control for the fixed effect or for price endogeneity (columns [1] and [5]), the estimated elasticity is still 1 and the dummies are significant. On the other hand, when we control for price endogeneity but not for country specific effects, only one time dummy is significant (columns [2] and [6]). The WG estimates (columns [3] and [7]) without controlling for price endogeneity deliver values for \(\beta_0 \) very close to columns [3] and [7] of Table 3 and likewise columns [4] and [8] are similar in the two tables. Furthermore, the WG estimates that control for price endogeneity (columns [4] and [8]) indicate that price dummies are insignificant. Finally the Wald Tests rejects \(\beta_0 = 1 \) in columns [3], [4], [7] and [8]. All in all, the addition of time dummies makes little difference, especially when controlling for cross country heterogeneity and price endogeneity.

In summary, if we had to pick one estimate to report from this averaged panel exercise it would be the one for the six year average (column [4]), 0.66, with a robust standard error of 0.16; the corresponding estimate for the 7 year average has a higher robust standard error so we consider it inferior. The good news about this estimation strategy is that we get estimates of the long run elasticity and that serial correlation tests come back negative. Moreover, time dummies are significant only when we do not control for price endogeneity. The downside is that all standard errors are higher when we work with the averaged data than with the annual data. In particular, the WG-2SLS robust standard errors are doubled, compare columns [4] in Tables 2 and 3. This comes from the fact that we have less data points to work with when the data is averaged. Also, this approach does not make a distinction between the short run and long run price elasticity of demand. The approach we turn to next makes this distinction.

4.2 Dynamic Panel

We implemented the dynamic panel specification, (22), employing OLS, WG and GMM estimators. Before we comment on the numerical results we obtained, we discuss several issues that GMM estimation brings up. In particular we discuss what estimates we report, how we obtained these estimates and how one should go about interpreting them.
The first issue to be discussed is that the usual GMM procedure that uses all lagged values as instruments becomes computationally infeasible when T gets large. This is shown in full detail in Arellano and Bond (1998). Furthermore, Monte Carlo experiments (see Judson and Owen (1996)) indicate that increasing the number of instruments used creates a trade off. On the one hand, it increases the efficiency but, on the other hand, it increases the bias of the estimated β_1.\(^{20}\) To deal with this issue, we used a “restricted GMM” procedure in which the number of lagged values used as instruments was at most two.

The second issue is that we had to decide whether to report numbers from the one step or the two step GMM (we describe these procedures in Appendix A). The one step GMM is predicated on the error terms ϵ_{jt} being independent and homoskedastic - both cross sectionally and over time. But then standard errors and test statistics are not robust to heteroskedasticity. The two step GMM remedies this problem by constructing a consistent estimate of the variance-covariance matrix of the moment conditions (based on first step residuals) and then re-running the estimator.\(^{21}\) The problem with the two step GMM estimator however is that the standard errors it produces are biased downward in small samples.\(^{22}\) This problem is pointed out in Blundell and Bond (1998a). The same authors also show - via Monte Carlo simulations - that the precision of the one step GMM is not much lower than the precision of the two step GMM. Following up on these findings, we report the following estimates. For the point estimates of β’s we report the estimates from one step GMM; for standard errors we report the estimates from one step GMM - corrected by the variance-covariance matrix computed from the first step residuals; and for specification tests and checking for second order serial correlation we report the estimates from two step GMM. This last choice is guided by the fact that the Sargan test, based on the two step GMM, is the only one that is heteroskedasticity consistent. Also, the asymptotic power of the second order serial correlation test increases in the efficiency of the GMM estimator,\(^{23}\) and the two step GMM is more efficient.

A third issue is whether to include lagged price $\ln p_{jt-1}$ on the right hand side of the regression equation. As far as the generality of econometric procedure, $\ln p_{jt-1}$ should be

\(^{20}\)An empirical cross country study that lends further support to this result is Loyaza, Schmidt-Hebbel and Serven (2000).

\(^{21}\)If the error terms are spherical (homoskedastic), the one step and the two step GMM estimators are asymptotically equivalent for GMM-DIF. Otherwise, the two step GMM is more efficient.

\(^{22}\)Windmeijer (2000) created a procedure to correct the standard errors of the two step GMM estimator and embedded it into the DPD98 program for Gauss. He has kindly provided us with this procedure. We applied it to our problem and the standard errors we got were similar to those we got by correcting for heteroskedasticity.

\(^{23}\)See Arellano and Bond (1991).
included.\footnote{In order to pin down the correct specification one should start with a broad specification then let the statistical results dictate which variable(s) to keep.} As far as economic theory, $\ln p_{jt-1}$ should be excluded. This is because a price shock in period $t-1$ affects investment in period $t-1$, $\ln i_{jt-1}$, and $\ln i_{jt-1}$ affects $\ln i_{jt}$. However, once this chain of effects is accounted for, there is no further, independent effect of $\ln p_{jt-1}$ on $\ln i_{jt}$. Nonetheless, and for completeness sake, we report estimation results both when $\ln p_{jt-1}$ is included and excluded.

Let us now discuss now how to interpret the estimates, i.e., which of the various estimates we report (OLS, WG, GMM) in Table 5 is more reasonable. As Nickell (1981) and, more recently, Blundell and Bond (1998a) show, the transformation underlying WG estimation (see Section 3) biases the estimated coefficient β_1 downwards.\footnote{They show this however for the “pure” AR(1) case without exogenous regressors.} Furthermore, standard results - in simpler settings - show that, when variables are omitted, the estimate of β_1 is biased upwards under OLS regression; Appendix C extends these results to our setting. As far as GMM estimation, it is known that if T is small relative to N, then GMM estimators are consistent, whereas WG estimators are not. In our case however T is not so small relative to N ($T = 37, N = 113$) and theoretical results comparing GMM and WG in this case are just starting to emerge. The first such result is found in Alvarez and Arellano (2002). They consider the case where T/N tends to a positive constant and show that WG and GMM estimators exhibit negative asymptotic biases.\footnote{However, Alvarez and Arellano (2002) show this result for a first-order autoregressive model AR(1) without explanatory variables, with homoskedasticity and only the one step GMM estimator is considered.} However, they also report several Monte Carlo simulations where $T \leq N$, and where the bias of the GMM estimator is always smaller than the bias of the WG estimator. Therefore even if N and T are of (approximately) the same order of magnitude, it seems that GMM estimation is less biased.

Now we are ready to discuss the numerical results for the dynamic panel, as shown in Table 5.\footnote{All results in Tables 5, 6, and 7 are computed using the DPD98 software for GAUSS. See Arellano and Bond (1998).} Odd numbered columns report estimates when $\ln p_{jt-1}$ is included on the RHS of the regression equation, and even numbered columns report estimates when $\ln p_{jt-1}$ is excluded. As can be seen, the coefficient of $\ln p_{jt-1}$ is not significant in columns [5] and [7]. The first four columns of Table 5 report OLS and WG estimates of the parameters β_1, β_2 and β_3 together with estimates of the robust standard errors. As discussed above, the OLS estimates of β_1 are biased upwards while the WG estimates are biased downwards.\footnote{This is because the OLS estimator ignores not only the unobserved country specific effects but also the endogeneity of the explanatory variables. WG estimator deals with the first problem, but still ignores the second one.}
Computing the long run price elasticity β_{LR} from OLS estimation, we find that we cannot reject the hypothesis that it equals 1.

Columns [5] to [8] report the results of GMM estimation. In all GMM regressions we take the conservative approach of allowing for measurement errors that are uncorrelated across time. The validity of the lagged level variables $t - 3$ and $t - 4$ as instruments in the GMM-DIF equation [5] is not rejected by the Sargan tests. Likewise the $t - 3$ lagged level variables combined with $t - 2$ lagged first differenced variables as instruments in GMM-SYS in [7] is not rejected by the Sargan tests. Similar statements apply to regressions [6] and [8] where $\ln p_{j,t-1}$ is not included as an explanatory variable.\(^{29}\) We have tested for second order serial correlation and rejected that possibility.

As stated earlier, the WG estimates of β_1 are known to be biased downwards. Columns [5] and [6] show that GMM-DIF estimates are smaller yet. So this suggests that the instruments used in the GMM-DIF estimator are indeed weak.

Interpreting the overall message of Table 5, we would say that estimates under GMM-SYS, columns [6] and [8], seem the most reasonable. The estimated coefficients of $\ln i_{j,t-1}$ are higher than the WG estimates, which are known to be biased downwards, and lower than the OLS estimates, which are known to be biased upwards. Furthermore, the estimated coefficient of $\ln i_{j,t-1}$ under GMM-DIF is lower than under WG, so the GMM-DIF procedure seems to go in the wrong direction. If we compare standard errors, there is a gain in precision from exploiting the additional moment restrictions. And, finally, the difference Sargan statistic that tests the additional moment restrictions confirms their validity. Comparing columns [7] and [8] suggests that $\ln p_{j,t-1}$ can be omitted. Therefore, if we consider regression [8] as the most reasonable, the coefficient on the lagged dependent variable is 0.744, the short run price elasticity is 0.177, and the two together imply a long run price elasticity of investment demand of 0.691 (0.174). We tested the hypothesis that the long run price elasticity is 1, and rejected it at the 10% significance level.\(^{30}\)

Although the estimates reported under [8] seem the most reasonable, it is worth noting that the point estimate for β_{LR} from WG estimation, regression [4], is very close to the point estimate from the GMM-SYS estimation, column [8]. Although the WG estimation results are biased, Nickell (1981) shows that this bias is of order $1/T$. Therefore, since T is fairly large in our data set, this bias is quantitatively small. Note also that WG estimation rejects $\beta_{LR} = 1$ at the lower, 5%, significance level.\(^{30}\)

\(^{29}\)In this case, we use the lagged level $t - 2$ as instruments in the first-differenced equation (24). Also we use $t - 2$ as instruments in the first-differenced equations, combined with lagged first-differenced variables dated $t - 1$ as instruments in the level equations in (22) for $\ln p$.

\(^{30}\)The standard error of β_{LR} is obtained by using the Delta method. See appendix B.
In Table 6 we report OLS and WG estimates for the dynamic specification with time dummies added to the RHS of the regression equation. We obtained very similar results to those in Table 5 (columns [2] and [4] respectively). In particular, the WG estimation indicate long run price elasticity of investment demand of 0.707 (0.093).

For completeness we tried a more general lag structure of the dynamic specification, which includes a second lag of the price and investment variables. The last two columns of Table 7 report GMM-SYS estimations of this generalized equation. It turns out that both lagged variables $\ln i_{jt-2}$ and $\ln p_{jt-2}$ are not significant.

What we can say as an overall summary from this analysis is that putting lagged investment on the RHS of the regression equation shows a positive and significant coefficient β_1 and eliminates the need to add an arbitrary serially dependent error term. In addition it allows us to distinguish between the short run and long run price elasticities and, as it turns out, this distinction is quantitatively significant; the long run price elasticity of investment demand is more than three times bigger than the short run elasticity. And finally if country specific effects are not controlled for, we continue to get a long run estimate of 1 even with dynamic panel data techniques.

5 The Bias of OLS Estimation

A repeatedly appearing result in Section 4 is that, when country-specific effects are ignored, the Cobb-Douglas hypothesis $\sigma = 1$ is accepted. In this section we investigate what gives rise to this result. We do this by calculating the bias that comes from not considering country specific effects and adding this bias to the estimated value of σ when these effects are considered. Then the sum of the two is indeed 1.

31As before, it was infeasible to apply GMM estimators when time dummies are included. This is because the total number of instruments would then be excessively large relative to the cross section dimension. This implies that the two step GMM estimator, cannot be computed because the matrix $W_2 = \left(\frac{1}{N} \sum_{j=1}^{N} Z_j^{D} e_j e_j' Z_j^{D} \right)^{-1}$ is not invertible. See appendix A and, for a full treatment of invertibility issues, Arellano and Bond (1998).

32Note that the estimated value of β_1, 0.744, is quite close to the estimated ρ that we obtained with the static AR(1) specifications, 0.725.

33We also conducted a wide array of sensitivity analyses to verify the robustness of our results. First, we consider two alternative sub samples, broken up according to ‘early’ and ‘late’ periods. The first sub sample has observations from 1960 to 1978 and the second from 1979 to 1996. Moreover, we conducted the estimations with and without Sub Saharan countries. Overall, the GMM-SYS estimates are pretty robust across these alternative data sets and the long run price elasticity are between 0.72 and 0.78.
To begin with, let’s define
\[i' \equiv (i'_1, \ldots, i'_j, \ldots, i'_N) \] \[p' \equiv (p'_1, \ldots, p'_j, \ldots, p'_N) \]
where \(i'_j \equiv (i_{j1}, \ldots, i_{jt}, \ldots, i_{jT}) \) and \(p'_j \equiv (p_{j1}, \ldots, p_{jt}, \ldots, p_{jT}) \).

The variance-covariance matrix of the PWT data is
\[M = \begin{bmatrix}
\text{var} (\ln i) & \text{cov} (\ln i, \ln p) \\
\text{cov} (\ln i, \ln p) & \text{var} (\ln p)
\end{bmatrix} = \begin{bmatrix}
0.605 & -0.307 \\
-0.307 & 0.306
\end{bmatrix}.
\]

Then the OLS estimate of the static panel satisfies
\[\hat{\beta}_0^{\text{OLS}} = -1.00 = \frac{\text{cov} (\ln i, \ln p)}{\text{var} (\ln p)} = \frac{\text{cov} (\ln FE + \beta_0 \ln p, \ln p)}{\text{var} (\ln p)} = \frac{\text{cov} (\ln FE, \ln p)}{\text{var} (\ln p)} + \beta_0. \]

This implies that OLS estimation will bias upwards the estimated value of \(\beta_0 \) whenever \(\text{cov}(\ln FE, \ln p) < 0 \) (which, as the next paragraph shows, is the case).

An analogous - although more involved - proof applies to the dynamic panel. In Appendix C, using the fact that \(\text{var}(\ln p) \approx -\text{cov}(\ln i, \ln p) \approx \frac{1}{2} \text{var}(\ln i) \), that \(\hat{\beta}_3 = \hat{\beta}_{3,\text{Bias}} = 0 \) and assuming that all economies are on a balanced growth path in the first period, we show that
\[
\frac{\partial \hat{\beta}_L^{\text{OLS}}}{\partial \text{cov}(\ln FE^D, \ln p)} > 0, \text{ where } \hat{\beta}_L^{\text{OLS}} = \frac{\hat{\beta}_2 + \hat{\beta}_{2,\text{Bias}}}{1 - (\hat{\beta}_1 + \hat{\beta}_{1,\text{Bias}})}.
\] (30)

Thus OLS estimation biases upwards the estimated value of \(\beta_L \) for the dynamic panel as well. Furthermore, using the estimated values of \(\text{var}(\ln FE^D) \) and \(\text{cov}(\ln FE^D, \ln p) \), we calculate \(\hat{\beta}_L^{\text{OLS}} \) directly, obtaining \(1.04 \).\(^{34}\) This helps explain why ignoring country specific effects biases the estimate of \(\beta \) upwards and leads to the erroneous conclusion that the aggregate production function is Cobb-Douglas.

To further substantiate this result and relate it to previous literature, we have done the following exercise. We restricted our time averaged data set to the more or less homogeneous set of 15 OECD economies. Table 8 displays estimation results for this sub panel when country specific effects are ignored. As shown in that table, the price elasticity estimates we get for \(\beta_0 \) are between \(0.54 \) (for 6 year averaging) and \(0.76 \) (for 7 year averaging).\(^{35}\) These

\(^{34}\)This estimate is obtained by computing \(\text{var}(\ln FE^D) \text{cov}(\ln FE^D, \ln p) \) (which fall out of the estimation) and from them get \(\hat{\beta}_L^{\text{OLS}} \) directly. Note that this direct estimate is not far off the estimate we report in Table 5, column 2.

\(^{35}\)The estimates we get for \(\beta_0 \) are, not surprisingly, of poor statistical quality. This is indicated by the
results are what we had expected. When attention is restricted to a small set of similar countries, country specific effects are approximately the same. Then the estimates we get should be close to the ones we get when we consider a large set of dissimilar countries, but when country specific effects are controlled for. This result is also in conformity with results reported by Collins and Williams (1999), using a similar approach, i.e., restricting attention to OECD economies.

To illustrate what country specific effects add to the statistical quality of results, we present the scatter plots of

\[
\Lambda \ln i \equiv \frac{\ln i_{jt} - \beta_1 \ln i_{jt-1} - \ln FE^D_j}{1 - \beta_1}, \ln p_j \]

Figure 1 shows this scatter plot for OLS estimation and Figure 2 shows it for GMM-SYS estimation. These Figures show that the scatter plot is tighter around the regression line for GMM-SYS, giving us a better fit of the data when country specific effects are included.

6 Quantitative Exercises

In this section we perform several quantitative exercises, showing what bearing our estimation results have on several important issues of economic development and income gaps across hi...
countries. In Subsection 6.1 we make the point that if we compare our estimated σ, $\sigma = 0.7$, to the traditionally used σ, $\sigma = 1$, then our σ magnifies the effect of distortions and thereby improves the neoclassical model’s capability to explain income differences. In Subsection 6.2 we perform a development decomposition exercise à la Hall and Jones (1999). This exercise suggests that $\sigma = 0.7$ reduces the correlation between TFP and per capita incomes and again magnifies the role of distortions. In Subsection 6.3 we assess how much of the distortions that our model formulation is based on are captured by the investment good price in the Summers Heston data set.

6.1 How income jointly varies with P and σ

In this subsection we show the quantitative effects of distortions. We calibrate the model to US data, then show the range and the elasticity of per capita incomes in a simulated model. The simulated model is the same as the calibrated US model economy, except that we plug hypothetical values of the distortion parameter into it. We exhibit the simulated model for various values of σ. This shows that a smaller value of σ magnifies the effect of distortions (in a sense to be made precise below). Altogether our estimation results along with the analysis in this subsection suggest that the role of distortions in explaining income gaps is bigger than has hitherto been believed. Or, to put the matter somewhat differently, they suggest that policies that reduce distortions in poor economies would have greater stimulative effects.

The analysis in Section 2 shows that steady state per capita income depends on the distortion parameters T_I and T_K, on the productivity parameters A and B and on other parameters of the model. To show this dependence let’s solve (11), assuming an interior solution. We get

$$k = \left\{ \frac{\alpha}{1 - \alpha} \left[\left(\frac{P}{P(\sigma)} \right)^{\sigma - 1} - 1 \right] \right\}^{-\frac{\sigma}{\sigma - 1}}, \quad (31)$$

where

$$P(\sigma) \equiv A \frac{\alpha^{\sigma - 1}}{\rho + \delta} \text{ and } P \equiv \frac{T_I T_K}{B}. \quad (32)$$

This solution is interior, i.e., $k > 0$ if and only if $\sigma < 1$ and $P < P(\sigma)$ or $\sigma > 1$ and $P > P(\sigma)$.36

36If $\sigma < 1$ and $P \geq P(\sigma)$ capital demand drops to zero (the economy is poverty trapped), whereas, if $\sigma > 1$ and $P \leq P(\sigma)$, capital demand is unbounded.
Substituting (31) into (3) and recalling that \(y = Af(k) \), we get
\[
y(P, \sigma) = A \left[\frac{1 - \alpha}{1 - \alpha K(P)} \right]^{\frac{\sigma}{1 - \alpha K}}.
\]
(33)

where
\[
\alpha K(P) \equiv k \frac{f'(k)}{f(k)} = \left[\frac{P}{P(\sigma)} \right]^{1 - \sigma}
\]
(34)
is the capital share of income.

Log-differentiating (33), the elasticity of income with respect to distortions is written as
\[
\eta(P, \sigma) \equiv -\frac{P}{y} \frac{dy}{dP} = \sigma \frac{\alpha K(P)}{1 - \alpha K(P)}.
\]
(35)

As they stand (33) and (35) depend not only on \(P \) and \(\sigma \) but also on other parameters, namely \(\alpha \) and \(A \). To isolate the role of \(P \) and \(\sigma \), we pin down the values of other parameters by calibrating the model to US data. To do this consider three equations that map unobserved parameters to observed variables.

\[
y = A \left[1 - \alpha + \alpha k^{\frac{\sigma - 1}{\sigma}} \right]^{\frac{\sigma}{\sigma - 1}}
\]
(36)

\[
\alpha_K = \frac{\alpha}{(1 - \alpha) k^{\frac{\sigma - 1}{\sigma}} + \alpha}
\]
\[
\kappa \equiv \frac{k}{y} = \frac{k A \left(1 - \alpha + \alpha k^{\frac{\sigma - 1}{\sigma}} \right)^{\frac{\sigma}{\sigma - 1}}}{A (1 - \alpha + \alpha k^{\frac{\sigma - 1}{\sigma}})^{\frac{\sigma}{\sigma - 1}}}
\]

\(y, \alpha_K \) and \(\kappa \) in these equations have the status of observed variables (from US data), while \(A \) and \(\alpha \) have the status of unobserved parameters. \(\sigma \) has the status of a “free parameter.”

We normalize \(y = 1 \) and solve system (36) for \(A \) and \(\alpha \) in terms of \(\kappa, \alpha_K \) and \(\sigma \), which gives
\[
A = \frac{\left[\alpha_K + (1 - \alpha_K) k^{\frac{\sigma - 1}{\sigma}} \right]^{\frac{\sigma}{\sigma - 1}}}{\kappa}
\]
(37)

and
\[
\alpha = \frac{\alpha_K}{\alpha_K + (1 - \alpha_K) \kappa^{\frac{\sigma - 1}{\sigma}}},
\]
(38)

Furthermore, using (34) and substituting (37) and (38) into (32) we get (subscript C stands for ‘calibrated’)
\[
P_C(\sigma) = \frac{\alpha_K^{\frac{\sigma}{\sigma - 1}}}{\rho + \delta \kappa} \quad \text{and} \quad P_C = \frac{\alpha_K}{\rho + \delta \kappa}.
\]
(39)
Having solved for A and α we simulate the model, i.e., we ask what US per capita income would have been for hypothetical values of the distortion parameter, P. We let $P = P_C P$, where P is a hypothetical distortion parameter for the US economy. We substitute (39) into (34), which gives

$$\alpha_K(P) = \alpha_K P^{1-\sigma}.$$ \hspace{1cm} (40)

Then we substitute (40) into (33) and (35), and get

$$y(P, \sigma) = \left(\frac{1 - \alpha_K}{1 - \alpha_K P^{1-\sigma}} \right)^{\frac{\sigma}{\sigma-1}},$$ \hspace{1cm} (41)

and

$$\eta(P, \sigma) = \sigma \frac{\alpha_K P^{1-\sigma}}{1 - \alpha_K P^{1-\sigma}}.$$ \hspace{1cm} (42)

Equations (41) and (42) is what we call the simulated model. They are illustrated in Figures 3 and 4 for a range of P values for which the solution is interior. The figures illustrate the dependence of per capita income on distortions for three distinct values of σ: $\sigma = 0.25$, 1, and 4.

Figures 3 and 4 suggest two ways of determining whether a smaller σ magnifies the effect of distortions or dampens them. Consider Figure 3 first. Then the (length of the) range of incomes that is spanned as P varies over some ‘relevant’ domain measures the impact of distortions. The bigger is this range the greater is the impact of distortions. We will take the relevant domain to be $[1, P_{\text{max}}]$, where the high end of the domain P_{max} is the largest P for which the equilibrium is interior. We take the low end of the domain to be 1 because}$

30
most economies have a calibrated value of P above 1. Altogether whether σ magnifies the effect of distortion is measured via

$$l(\sigma) = y(1, \sigma) - y(P_{\text{max}}, \sigma).$$

Using this measure and inspecting Figure 3 we see that l is decreasing in σ and thus that a smaller σ magnifies the effect of distortions.

Figure 4 suggests another way of determining whether a smaller σ magnifies the impact of distortions. If a smaller σ increases η we say that it magnifies the impact of distortions; otherwise it dampens it. As Figure 4 shows (and unlike Figure 3) this measure is ‘local’, i.e., it depends on the particular P at which this effect is evaluated. If P is small, then a large σ magnifies the impact of distortions.37 On the other hand, if P is large, then a small σ magnifies the impact of distortions. The analytical counterpart to this is the following Proposition.

Proposition 1 There exists a P^* so that

$$\frac{\partial \eta}{\partial \sigma} \leq 0 \text{ iff } P \geq P^*.$$

Proof. Differentiating (42) we get

$$\frac{\partial \eta}{\partial \sigma} = \eta(P) \left[1 - \alpha_K P^{1-\sigma} - \ln P^\sigma \right].$$

Therefore the sign of $\frac{\partial \eta}{\partial \sigma}$ depends on the sign of the numerator. Let us study then the numerator, which is a continuous function of P

$$H(P) \equiv 1 - \alpha_K P^{1-\sigma} - \ln P^\sigma. \quad (43)$$

We prove first that H is decreasing in P whenever the solution is interior. Indeed

$$\frac{dH}{dP} = -\frac{\sigma}{P^\sigma} \left[\frac{1 - \sigma}{\sigma} \alpha_K + P^{\sigma - 1} \right].$$

And this is negative when $\sigma < 1$ and $P < \alpha_K^{\frac{1}{\sigma - 1}}$ or when $\sigma > 1$ and $P > \alpha_K^{\frac{1}{\sigma - 1}}$ (which, it can be shown, is equivalent to the condition for interior maximum).

37This finding is consistent with Mankiw’s (1995) work.
Second if $\sigma = 1$, $H(P) \equiv 1 - \alpha_K - \ln P$, so we can explicitly solve $H(P) = 0$ and get $P = e^{1-\alpha_K}$. If $\sigma < 1$, we have $\lim_{P \to 0} H(P) = \infty$ and $H(\alpha_K^{\frac{1}{1-\sigma}}) = \frac{\sigma}{1-\sigma} \ln \alpha_K < 0$. Thus there must be a $P \in [0, \alpha_K^{\frac{1}{1-\sigma}})$ so that $H(P) = 0$. If $\sigma > 1$, $H(\alpha_K^{\frac{1}{1-\sigma}}) = -\frac{\sigma}{\sigma-1} \ln \alpha_K > 0$ and $\lim_{P \to \infty} H(P) = -\infty$. So again there must be a P so that $H(P) = 0$. Since H is decreasing this P is unique. ■

Given this Proposition we know there must be a \hat{P} so that $\eta(\hat{P}, 0.7) = \eta(\hat{P}, 1.0)$, and after some computations we find that $\hat{P} = 2.01$. Therefore, if $P > 2.01$ distortions under $\sigma = 0.7$ have stronger impact than under CD, $\sigma = 1$. Furthermore, using the calculations in subsection 6.3, we find that roughly 40% of the (poorest) economies in the PWT have distortions in this range. The practical implication from this is that policies that reduce distortions in such economies have a greater impact under a CES production function with $\sigma = 0.7$ than under a CD production function with $\sigma = 1.0$.

6.2 TFP when $\sigma = 0.7$

In this section we calculate the total factor productivity implied by our model and how it correlates with per capita incomes. We do this in our model with $\sigma = 0.7$, and compare the results to those calculated by Hall and Jones (1999), which use the Cobb-Douglas specification, $\sigma = 1$. Hall and Jones (1999) use data for per worker capital and per worker output controlled for education for 127 economies and measured in efficiency units. The data is for 1988 and the per worker output excludes the output of the mineral sector. We use the same data for the exercise of this section.

The analogue of the Hall-Jones exercise in our framework works as follows. We substitute (37) and (38) into the production function and get

$$y_j = A_j \left[1 - \alpha_K + \alpha_K \left(\frac{k_j}{\kappa} \right)^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}},$$

where $A_j \equiv \frac{A}{A}$ is the TFP of the jth economy, A is the US calibrated value from Subsection 6.1, $\alpha_K = \frac{1}{3}$ and $\kappa = 3$ (observed US values).
Then we take the values of y_j and k_j as reported in Hall and Jones (1999). Plugging those into equation (44), we compute the implied A_j for each economy. Then we plot those implied A_j against the corresponding GDP’s y_j. The plot we get along with the plot that Hall and Jones get are shown in Figures 5 and 6.

Inspecting these figures and doing some calculations two features are revealed. First the correlation between the implied A and y is reduced: $\text{corr}(y, A)$ is now (under $\sigma = 0.7$) 0.49, whereas before (under $\sigma = 1$) it was 0.86. Second the average implied A increases from 0.61 to 0.73.

6.3 How much of the distortions are captured by S-H data?

The model formulation in Section 2 accommodates both observed ($T_{I,j}$) and unobserved ($T_{K,j}$) distortions. This raises the question what portion of the overall distortions are reflected by the price of capital in the Summers Heston data set. As it turns out, our estimation results can be used to address that question. To do this, note that equation (18) implies

$$\frac{FE_j}{FE_{US}} = \left(\frac{T_{K,US}}{T_{K,j}} \right)^{\sigma} \left(\frac{A_{US}}{A_j} \right)^{1-\sigma},$$

which, after some manipulations, gives

$$\frac{T_{K,j}}{T_{K,US}} = \left(\frac{FE_{US}}{FE_j} \right)^{\frac{1}{\sigma}} A_j^{\frac{1-\sigma}{\sigma}}.$$

(45)
We plug the implies values of A_j (as we computed them in Subsection 6.2) along with the estimated values of the fixed effects FE_j (using the dynamic panel data approach, Subsection 4.2) into (45). Then we compute the implied value of $T_{K,j}$. We find that $T_{K,j} \in [0.4, 12]$, that average$(T_{K,j}) = 1.5$ and that

$$\begin{bmatrix}
\text{var} (\ln A) & \text{cov} (\ln A, \ln T_K) & \text{cov} (\ln A, \ln p) \\
\text{cov} (\ln A, \ln T_K) & \text{var} (\ln T_K) & \text{cov} (\ln T_K, \ln p) \\
\text{cov} (\ln A, \ln p) & \text{cov} (\ln T_K, \ln p) & \text{var} (\ln p)
\end{bmatrix} = \begin{bmatrix}
0.16 & -0.08 & -0.05 \\
-0.08 & 0.43 & 0.08 \\
-0.05 & 0.08 & 0.24
\end{bmatrix},$$

where p is the vector of cross time price averages. Looking at this table we see that the cross-country variability of the PWT data on prices $\text{var} (\ln p)$, 0.24, represents roughly 36% of the total cross country variability of incentives to the investment decision, $\text{var}(\ln T_K) + \text{var}(\ln p)$, 0.67.

For completeness we have done an analogous exercise using the estimated FE from the static 6 years averaged panel. The results are in the same ball park: $T_{K,j} \in [0.37, 14]$, average$(T_{K,j}) = 1.7$, $\text{var}(\ln T_K) = 0.50$, $\text{cov}(\ln A, \ln T_K) = -0.09$, $\text{cov}(\ln T_K, \ln p) = 0.10$ and

$$\frac{\text{var}(\ln p)}{\text{var}(\ln T_K) + \text{var}(\ln p)} = \frac{0.24}{0.24 + 0.50} = 0.33.$$

Interestingly, when we do the same exercise under a Cobb-Douglas specification, $\sigma = 1.0$, we get the significantly larger portion 66%.

7 Conclusion

This paper presents several econometric exercises aimed at estimating the elasticity of substitution between capital and labor of an aggregate production function. Our results indicate that this elasticity hovers around 0.7 and that it is decidedly less than 1. Once we obtain a value for σ we use it to address the question whether the neoclassical model accounts for income gaps and to do various macro-development exercises. More broadly, our approach is to estimate some parameter from data that is relevant to the problem at hand and then show the role that this parameter plays in a calibration exercise. Let us now suggest that this approach can be fruitfully applied in other contexts.

The first application is still within the macro-development context. Following up on Lewis (1954) work, two sector models of development have recently been popularized; see

38 We used the SYS-GMM estimates of $\ln FE_j^D$, and set $\ln FE_j = \frac{\ln FE_j^D}{1-\beta}$.

34
for example Hansen and Prescott (2002). One sector is a traditional or agricultural sector whereas the other is a modern or industrial sector. In such context one studies how economies transit from traditional to industrial production or, conversely, how poorly managed (highly distorted) economies revert back to traditional production. Just as above, a key determinant of this process is the elasticity of substitution and hence one can quantitatively evaluate the process under an empirically estimated σ. Compared to what we have done here, in this two sector framework there may no longer be such thing as a poverty trap (which happens in our one sector model). Compared with the previously studied two sector model, the calibration and simulation results are expected to be different when $\sigma = 0.7$ (as opposed to $\sigma = 1$).

A second application is to the (micro) policy question of quantifying the effects of investment tax credits. The investment equation we derive here, (17), shows that investment tax credits have a greater stimulative effect on investment the greater is σ. Then, as in Chirinko (2002), one can study how government policy along with properties of the production function affect investments. A third application of our approach is in the context of the real business cycle literature. A key ingredient in this literature is the aggregate production function. Therefore whatever quantitative exercises are done in this literature can be re-done by first estimating a production function from relevant data and then using it in the quantitative exercises.
References

A Dynamic panel Estimation with GMM

GMM-DIF Estimation. The first two observations used for estimating equation (24) are lost to lags and differencing. At \(t = 3 \), \(\ln i_{j1} \) is a valid instrument for \(\ln i_{j2} - \ln i_{j1} \), and \(\ln p_{j1} \) is a valid instrument for \(\ln p_{j2} - \ln p_{j1} \) and \(\ln p_{j3} - \ln p_{j2} \). Similarly, at \(t = 4 \), \(\ln i_{j1} \) and \(\ln i_{j2} \) are valid instruments for \(\ln i_{j3} - \ln i_{j2} \), and \(\ln p_{j1} \) and \(\ln p_{j2} \) are valid instruments for \(\ln p_{j3} - \ln p_{j2} \) and \(\ln p_{j4} - \ln p_{j3} \), respectively. Consequently, the instrument matrix has one row for each time period, giving \(T - 2 \) rows altogether, and \(M = 2 \times \sum_{m=1}^{T-2} m \) columns. The instruments matrix is

\[
Z^D_j = \left(Z^{D1}_j, Z^{D2}_j \right),
\]

where

\[
Z^{D1}_j = \begin{pmatrix}
\ln i_{j1} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & \ln i_{j1} & \ln i_{j2} & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \ln i_{j1} & \ln i_{j2} & \cdots & \ln i_{jT-2}
\end{pmatrix}
\]

\[
Z^{D2}_j = \begin{pmatrix}
\ln p_{j1} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & \ln p_{j1} & \ln p_{j2} & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \ln p_{j1} & \ln p_{j2} & \cdots & \ln p_{jT-2}
\end{pmatrix}
\]

Let \(X_{jt} = (\ln i_{jt-1}, \ln p_{jt}, \ln p_{jt-1}) \) be the 1 \times 3 vector of covariates for \(j \) and \(t \) and \(\Theta \) the 3 \times 1 vector of coefficients. Define the first-differenced variables as

\[
y^*_j = \begin{pmatrix}
\ln i_{j3} - \ln i_{j2} \\
\ln i_{j4} - \ln i_{j3} \\
\vdots \\
\ln i_{jT} - \ln i_{jT-1}
\end{pmatrix}, \quad X^*_j = \begin{pmatrix}
X_{j3} - X_{j2} \\
X_{j4} - X_{j3} \\
\vdots \\
X_{jT} - X_{jT-1}
\end{pmatrix}, \quad \text{and} \quad \epsilon^*_j = \begin{pmatrix}
\epsilon_{j3} - \epsilon_{j2} \\
\epsilon_{j4} - \epsilon_{j3} \\
\vdots \\
\epsilon_{jT} - \epsilon_{jT-1}
\end{pmatrix}.
\]

The moment restrictions (25) and (26) can be written as \(E(Z^D_j \epsilon^*_j) = 0 \), where \(0 \) is an \(M \times 1 \) vector of zeros. The GMM estimator based on these moment restrictions minimizes the expected quadratic distance between \(\epsilon^*Z^D WZ^D \epsilon^* \) and the true vector of parameters for the metric \(W \), where \(Z^D_j \) is the \(M \times N(T-2) \) matrix \((Z^{D1}_1, Z^{D1}_2, \ldots, Z^{D1}_N) \) and \(\epsilon^* \) is the \(N(T-2) \)
vector $(\epsilon'_1, \epsilon'_2, ... \epsilon'_N)$. This gives the GMM estimator of Θ as

$$\hat{\Theta} = (X^{st'}Z^DWH^{D'}X^*)^{-1}X^{st'}ZW^Dy^*,$$

where y^* is an $N(T-2)$ vector and X^* is an $N(T-2) \times 3$ matrix.

Arellano and Bond (1991) suggest two choices for the weights W, giving rise to two GMM estimators: one and two step estimators. In the one step estimator it is assumed that the ϵ_{jt} are independent and homoskedastic both across units and over time. Then the optimal choice of W is given by $W_1 = \left(\frac{1}{N} \sum_{j=1}^{N} Z_j^D H^D Z_j^D\right)^{-1}$, where H^D is the $(T-2) \times (T-2)$ variance-covariance matrix of $E(\epsilon_j^* \epsilon_j^*)$

$$H^D = \begin{pmatrix}
2 & -1 & 0 & \cdots & 0 & 0 \\
-1 & 2 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 2 & -1 \\
0 & 0 & 0 & \cdots & -1 & 2
\end{pmatrix}.$$

The variance-covariance estimator of the parameter $\hat{\Theta}$ that is robust to heteroskedasticity is

$$\hat{V}(\Theta) = N(X^{st'}Z^D W^{-1}Z^{D'}X^*)^{-1}X^{st'}Z^D W^{-1} \left(\sum_{j=1}^{N} Z_j^D \epsilon_j^* \epsilon_j^* Z_j^D\right) W^{-1} Z^{D'} X^* (X^{st'} Z^D W^{-1} Z^{D'} X^*)^{-1},$$

where $\hat{\epsilon}_j^*$ are the estimated residuals.

For the two step estimator the previous assumptions about ϵ_{jt} are relaxed. In the first step we obtain the $\hat{\epsilon}_j^*$ and then we use them to construct a consistent estimate of the variance-covariance matrix of the moment restrictions. In this case, the optimal choice of W is given by $W_2 = \left(\frac{1}{N} \sum_{j=1}^{N} Z_j^D \epsilon_j^* \epsilon_j^* Z_j^D\right)^{-1}$.

Both GMM estimators are consistent when N is much larger than T, although they may differ in their asymptotic efficiency. Also, in the special case of i.i.d. disturbances, both are asymptotically equivalent.

System GMM. The additional moment conditions (27) and (28) can be expressed as

$$E(Z^{t'} \epsilon_j) = 0,$$

where
\[
Z_j^L = \begin{pmatrix}
y_{j2} & 0 & \cdots & 0 & \triangle \ln p_{j2} & 0 & \cdots & 0 \\
0 & y_{j3} & \cdots & 0 & 0 & \triangle \ln p_{j3} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & y_{jT-1}^* & 0 & 0 & \cdots & \triangle \ln p_{jT-1}
\end{pmatrix},
\]

with \(\triangle \ln p_{jt} = \ln p_{jt} - \ln p_{jt-1} \). Now, we can construct a GMM estimator which exploits both sets of moment restrictions. The instrument matrix for GMM-SYS is written as

\[
Z_j = \begin{pmatrix} Z_j^D & 0 \\ 0 & Z_j^L \end{pmatrix}.
\]

The GMM-SYS estimator combines both sets of moment restrictions

\[
E(Z_j' \xi_j) = 0,
\]

where

\[
\xi_j = \begin{pmatrix} \epsilon_j^* \\ \epsilon_j \end{pmatrix}.
\]

Note that the one step GMM estimator is not asymptotically equivalent to the two step estimator - even when disturbances are i.i.d. The natural candidate for a weighting matrix for the one step estimator is \(W_1^{SYS} = \left(\frac{1}{N} \sum_{j=1}^{N} Z_j' H Z_j \right)^{-1} \), where \(H \) is

\[
H_j = \begin{pmatrix} H_j^D & 0 \\ 0 & I_j \end{pmatrix},
\]

which is always asymptotically inefficient relative to the two step estimator, because with level equations included in the system, the optimal weighting matrix depends on unknown parameters.

The construction of the two step GMM-SYS estimator is then analogous to that described under GMM-DIF, except that we use \(H_j = \tilde{\xi}_j \tilde{\xi}_j' \).

Monte Carlo simulations of Blundell and Bond (1998a) show that the finite sample distributions of the one step and two step system GMM estimators are similar.
B Estimated Standard Error of the Long-Run Price Elasticity

In order to compute the estimated standard error of the long run price elasticity of investment demand β_{LR} we apply the Delta Method. Define $\beta \equiv (\beta_1, \beta_2, \beta_3)'$. Then β_{LR}, as a function of β, is given by equation (23). Applying a first order Taylor series approximation to this function around the true value of β we get

$$LR(\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3) \approx LR(\beta_1, \beta_2, \beta_3) + (\nabla LR)'(\hat{\beta} - \beta),$$

where $(\nabla LR)' = \begin{bmatrix} \frac{\partial LR}{\partial \beta_1} & \frac{1}{1-\beta_1} & \frac{1}{1-\beta_1} \\ \frac{1}{1-\beta_1} & \frac{\partial LR}{\partial \beta_2} & \frac{1}{1-\beta_1} \\ \frac{1}{1-\beta_1} & \frac{1}{1-\beta_1} & \frac{\partial LR}{\partial \beta_3} \end{bmatrix}$

is the gradient of $LR(\beta_1, \beta_2, \beta_3)$. The variance of $LR(\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)$ (which is a nonlinear function of $(\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)$) is approximately equal to the variance of the right hand side of (46), which is

$$\text{var}(LR(\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)) = \frac{\partial LR}{\partial \beta} \Big|_{\beta = \hat{\beta}} \text{var}(\hat{\beta}) \frac{\partial LR}{\partial \beta} \Big|_{\beta = \hat{\beta}},$$

where $\text{var}(\hat{\beta})$ is the estimated variance-covariance matrix of β

$$\text{var}(\hat{\beta}) = \begin{bmatrix} \text{var}(\hat{\beta}_1) & \text{cov}(\hat{\beta}_1, \hat{\beta}_2) & \text{cov}(\hat{\beta}_1, \hat{\beta}_3) \\ \text{cov}(\hat{\beta}_1, \hat{\beta}_2) & \text{var}(\hat{\beta}_2) & \text{cov}(\hat{\beta}_2, \hat{\beta}_3) \\ \text{cov}(\hat{\beta}_1, \hat{\beta}_3) & \text{cov}(\hat{\beta}_2, \hat{\beta}_3) & \text{var}(\hat{\beta}_3) \end{bmatrix}.$$

C The Bias of the OLS Estimation

We assume in this Appendix that the price of investment is an exogenous variable. Then

$$\hat{\beta}_{\text{Bias}} = \lim_{N \to \infty} \left(\frac{1}{N}X'X \right)^{-1} \frac{1}{N}X'XFE,$$

where

$$X' = \begin{bmatrix} 1 & \ldots & 1 \\ \ln i_{12} & \ldots & \ln i_{1T} \\ \ln p_{12} & \ldots & \ln p_{1T} \\ \ldots & \ldots & \ldots \\ \ln i_{j2} & \ldots & \ln i_{jT} \\ \ln p_{j2} & \ldots & \ln p_{jT} \\ \ldots & \ldots & \ldots \\ \ln i_{N2} & \ldots & \ln i_{NT} \\ \ln p_{N2} & \ldots & \ln p_{NT} \end{bmatrix}_{3 \times ((T-1)N)}$$

42
and

$$\mathbf{FE}'_{1 \times ((T-1)N)} = \begin{bmatrix} \ln FE_1^D & \ldots & \ln FE_1^D & \ldots & \ln FE_j^D & \ldots & \ln FE_j^D & \ldots & \ln FE_N^D & \ldots & \ln FE_N^D \end{bmatrix}.$$

$$\ln FE_j^D \equiv \ln FE_j^D - \frac{1}{N} \sum_{j'=1}^{N} \ln FE_{j'}^D$$ is the centred fixed effect for the j-th economy. The first observation is deleted due to the dynamics.

Evaluating $\frac{1}{N} \mathbf{X}' \mathbf{FE}$, we have

$$\frac{1}{N} \mathbf{X}' \mathbf{FE} = \begin{bmatrix} \frac{1}{N} \sum_{j=1}^{N} \ln FE_j^D \\
\frac{1}{N} \sum_{j=1}^{N} \sum_{t=2}^{T} \ln i_{jt} \ln FE_j^D \\
\frac{1}{N} \sum_{j=1}^{N} \sum_{t=2}^{T} \ln p_{jt} \ln FE_j^D \end{bmatrix}.$$

Now we are going to compute each of the three components of $\frac{1}{N} \mathbf{X}' \mathbf{FE}$. The first component is zero by the way $\ln FE_j^D$ is defined. It remain then to compute the other two components.

To compute the third component of $\frac{1}{N} \mathbf{X}' \mathbf{FE}$, we assume that the covariance between the price and the fixed effect is time invariant

$$\text{plim}_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} \ln p_{jt} \ln FE_j^D = \text{plim}_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} \ln p_{jt'} \ln FE_j^D \text{ for any } t, t' \in \{1, \ldots, T\}.$$

(48)

Then

$$\text{plim}_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} \sum_{t=2}^{T} \ln p_{jt} \ln FE_j^D = \text{plim}_{N \to \infty} \frac{T-1}{N} \sum_{j=1}^{N} \ln p_{jt} \ln FE_j^D.$$

To compute the second component of $\frac{1}{N} \mathbf{X}' \mathbf{FE}$, we apply equation (22) in the text. Then, using $\sigma = -\frac{\beta_2 + \beta_3}{1 - \beta_1}$ and the fact that β_3 is estimated to be zero, equation (22) is reduced to

$$\ln i_{jt} = \ln FE_j^D + \beta_1 \ln i_{j,t-1} - \sigma (1 - \beta_1) \ln p_{jt} + \epsilon_{jt}.$$

(49)

Now we repeatedly substitute (49) into itself, obtaining

$$\ln i_{jt} = \frac{1 - \beta_1^{t-1}}{1 - \beta_1} \ln FE_j^D + \beta_1^{t-1} \ln i_{j1} - \sum_{k=0}^{t-2} \beta_1^k [\sigma (1 - \beta_1) \ln p_{j,t-k} - \epsilon_{j,t-k}].$$

(50)
Then assuming that all economies are initially on a balanced growth path we have

\[\ln i_{j1} = \ln FE_j^D - \sigma \ln p_{j1} + \epsilon_{j1}. \]

(51)

Plugging (51) into (50) we get

\[\ln i_{jt} = \frac{1 - \beta^t_1}{1 - \beta_1} \ln FE_j^D - \beta^t_1 \sigma \ln p_{j1} - \sigma (1 - \beta_1) \sum_{k=0}^{t-1} \beta^t_1 \ln p_{j,t-k} + \sum_{k=0}^{t-1} \beta^t_1 \epsilon_{j,t-k}. \]

The above equation allows us to write the second component of \(\frac{1}{N} X' Fe \) as

\[
\sum_{j=1}^{N} \sum_{t=2}^{T} \ln i_{jt} \ln FE_j^D = \sum_{t=2}^{T} \frac{1 - \beta^t_1}{1 - \beta_1} \sum_{j=1}^{N} \ln FE_j^D \ln FE_j^D - \sigma \sum_{t=2}^{T} \sum_{j=1}^{N} \beta^t_1 \ln p_{j1} \ln FE_j^D \\
- \sigma (1 - \beta_1) \sum_{t=2}^{T} \sum_{k=0}^{t-1} \beta^t_1 \sum_{j=1}^{N} \ln p_{j,t-k} \ln FE_j^D \\
+ \sum_{t=2}^{T} \sum_{k=0}^{t-1} \beta^t_1 \sum_{j=1}^{N} \epsilon_{j,t-k} \ln FE_j^D.
\]

To simplify this last expression, we re-use our assumption (48) and, on top of that, assume that

\[\text{plim} \frac{1}{N} \sum_{j=1}^{N} \epsilon_{jt} \ln FE_j^D = 0, \text{ for all } t. \]

Then after some calculations we find that

\[\text{plim} \frac{1}{N} \sum_{j=1}^{N} \sum_{t=2}^{T} \ln i_{jt} \ln FE_j^D = \text{plim} \frac{D}{N} \sum_{j=1}^{N} \ln FE_j^D \ln FE_j^D - \text{plim} \frac{T - 1}{N} \sum_{j=1}^{N} \ln p_{j1} \ln FE_j^D, \]

where

\[D \equiv \frac{(1 - \beta_1) (T - 1) - \beta^2_1 (1 - \beta_1^{T-1})}{(1 - \beta_1)^2}. \]

This completes the computation of the second component. Introducing simplifying notation and stacking up the three components we have

\[
\frac{1}{N} X' Fe = N \begin{bmatrix}
0 \\
D \text{var} (\ln FE^D) - \sigma (T - 1) \text{cov} (\ln FE^D, \ln p) \\
(T - 1) \text{cov} (\ln FE^D, \ln p)
\end{bmatrix}.
\]

44
Going back to (47) we now find that

\[
\hat{\beta}_{\text{Bias}} = \begin{bmatrix}
\hat{\beta}_{0, \text{Bias}} \\
\hat{\beta}_{1, \text{Bias}} \\
\hat{\beta}_{2, \text{Bias}}
\end{bmatrix} = \left(\lim_{N \to \infty} \frac{\det X'X}{N^3(T-1)^2} \right)^{-1} \begin{bmatrix}
\bullet & \bullet & \bullet \\
\bullet & \text{var}(\ln p) & -\text{cov}(\ln i, \ln p) \\
\bullet & -\text{cov}(\ln i, \ln p) & \text{var}(\ln i)
\end{bmatrix}
\times \begin{bmatrix}
0 \\
D \text{var}(\ln \text{FE}^D) - \sigma (T-1) \text{cov}(\ln \text{FE}^D, \ln p) \\
(T-1) \text{cov}(\ln \text{FE}^D, \ln p)
\end{bmatrix}.
\]

Now that we found the biases, we plug them into (30) and derive the following result

\[
\frac{\partial \beta_{\text{OLS}}^{\text{LR}}}{\partial \text{cov}(\ln \text{FE}, \ln p)} = \left(\lim_{N \to \infty} \frac{\det X'X}{N^3(T-1)^3} \right)^{-1} \frac{2 - \sigma + \hat{\beta}_{\text{OLS}}^{\text{LR}} (1 - \sigma)}{1 - (\hat{\beta}_{1} + \hat{\beta}_{1, \text{Bias}})} \text{var}(\ln p). \tag{52}
\]

In deriving this result we use the fact that, according to the data,

\[
\text{var}(\ln i) \approx 2 \text{var}(\ln p) \quad \text{and} \quad \text{var}(\ln p) \approx -\text{cov}(\ln i, \ln p).
\]

Consider now equation (52). The first and third terms are positive. The denominator of the second term is also positive because all our regression results are such that \(\hat{\beta}_{1} + \hat{\beta}_{1, \text{Bias}} < 1\) (and more generally because unit root in the investment process had been ruled out). Therefore if we can show that the numerator of the second term is positive we will have that

\[
\frac{\partial \beta_{\text{OLS}}^{\text{LR}}}{\partial \text{cov}(\ln \text{FE}^D, \ln p)} > 0.
\]

To show that this numerator is positive we note that

\[
\frac{2 - \sigma}{1 - \sigma} \approx -\frac{2 - \hat{\beta}_{\text{OLS}}^{\text{LR}}}{1 - \hat{\beta}_{\text{OLS}}^{\text{LR}}} = -\frac{0.3}{0.3} \approx 0.
\]

where the equality comes from our estimation result \(\hat{\beta}_{\text{OLS}}^{\text{LR}} = 0.7\) (see Table 6, column [8]). Therefore if we can show that \(0 \geq \beta_{\text{OLS}}^{\text{LR}} > -4\) we would be done.

Let’s then explicitly calculate \(\beta_{\text{OLS}}^{\text{LR}}\). To do that we use the full information from the data

\[
(X'X)^{-1} = \begin{bmatrix}
0.0070 & -0.0023 & -0.0026 \\
-0.0023 & 0.0008 & 0.0008 \\
-0.0026 & 0.0008 & 0.0016
\end{bmatrix},
\]
and the following estimated values from our GMM-SYS estimation

\[
\sum_{j=1}^{N} \ln p_j \ln FE_j^D = -3 \quad \text{and} \quad \sum_{j=1}^{N} \ln FE_j^D \ln FE_j^D = 1.5.
\]

Furthermore, the dynamic panel has \(T = 36 \) and we know from the GMM-SYS estimation that \(\tilde{\beta}_1 = 0.744 \) and \(\tilde{\beta}_2 = -0.177 \) (Table 6, column [8]). Using all these values we get \(D \approx 128 \) and \(\sigma (T - 1) \approx 25 \). Then after plugging this into equation (30) we get

\[
\hat{\beta}^{\text{OLS}}_\text{LR} = \frac{\hat{\beta}_2 + \hat{\beta}_2,\text{Bias}}{1 - (\hat{\beta}_1 + \hat{\beta}_1,\text{Bias})} = -1.04,
\]

where \(\hat{\beta}_1,\text{Bias} = 0.13 \) and \(\hat{\beta}_2,\text{Bias} = 0.042 \).