Banking Strategy and Credit Expansion:
A Post Keynesian Approach*

Antonio J. Alves, Jr., Gary A. Dymski, Luiz-Fernando de Paula**

Abstract: This paper aims at clarifying the relationship between individual bank and banking industry behavior in credit expansion. We argue that the balance sheet structure of an individual bank is only partially determined by its management decision about how aggressively to expand credit; it is also determined by the balance sheet positions of other banks. This relationship is explicitly shown by a simple disaggregation of the variables that enter into the economy-wide money multiplier. The approach taken here revives a multi-bank approach to banking analysis pioneered by Wallace and Karmel (1962) which is particularly well-suited for integrating the micro and macro levels in Keynesian banking analysis.

Key words: banking behavior; banking firm; business cycle; credit; Post Keynesian theory

JEL classification: E12; E32; E44; G21

1. Introduction

This paper takes on several questions about strategic behavior and systemic outcomes in banking: What determines the limits to the asset growth of an individual bank over the business cycle? Is there any connection between an individual bank’s strategy and the behavior of the banking system as a whole – and in particular, what are the macroeconomic effects of bank behavior? And how does the stage of the business cycle affect banking strategy? To answer these questions, this paper:

- Clarifies and extends a remark by Keynes in his Treatise on Money, concerning the relationship between individual-bank and banking industry behavior in credit expansion.
- Explores how to integrate the micro and macro levels in bank behavior so as to make explicit the mutual causality between banking-firm strategy and aggregate outcomes. The key micro dimension introduced here is banks’ loan-making behavior.

* The authors would like to thank the participants of seminars held at the Brazilian Society of Political Economy (SEP), UNICAMP, and USP, two anonymous referees and also the Editors of CJE for their insightful comments on an earlier draft of this paper. Remaining errors are the authors’ responsibility.

** Alves, Universidade Federal Rural do Rio de Janeiro - UFRJ (email: antonioj@ufrrj.br); Dymski, University of California Center Sacramento (email: gary.Dymski@ucop.edu); Paula, Universidade do Estado do Rio de Janeiro – FCE/UERJ (email: luizfpaula@terra.com.br). Correspondence address: Prof Luiz-Fernando de Paula, Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Econômicas, Rua São Francisco Xavier, 524 sala 8039F, 20550-13, Rio de Janeiro, Brazil.
• Examines banks’ strategic incentives in different credit-expansion environments, to
develop a clearer understanding of how bank behavior affects business cycle dynamics.

This paper shows that the bank’s balance sheet is determined not only by its own strategic
choices, but also by the decisions and balance-sheet positions of other banks, as stressed by
Keynes (1960, published originally in 1930). Reviving an approach pioneered by Wallace and
Karmel (1962), this paper makes these points by disaggregating the variables that enter into the
simple money multiplier. This opens the way to an integration of the micro and macro levels in
Keynesian banking-system analysis, and sheds light on the links between banking strategy and
business-cycle dynamics.

2. Keynesian and Post Keynesian ideas about banking: what remains undone?

One of the most fertile fields of analysis opened by Keynes and the Post Keynesian economists
is the study of the relations between banks and economic activity. From the Treatise on Money,
to the General Theory, to the controversy with Robertson and Ohlin after the publication of the
General Theory, Keynes pointed out the importance of the banking system in supporting
investment. Following Keynes, Minsky (1982, 1986) developed his financial fragility
hypothesis. Minsky’s writings highlight the relation between the banking system and the trend to
financial fragility during the upturn of the business cycle, illustrating how crisis can occur as an
endogenous result of these units’ own economic dynamics.

Minsky’s writings, and many others by heterodox and orthodox theorists, assert that banks are
special, in that their activities are both crucial in the economy and non-substitutable with other
economic units. This suggests that bank behavior is important in macroeconomic outcomes; and
this in turn poses an analytical challenge: how to connect micro and macroeconomic analysis.

Most studies in recent years have explored the role of bank behavior in macro outcomes by
investigating the actions of a representative bank. This is analytically attractive, as it suggests
that insights from microfoundational frameworks can be generalized to the economy as a whole
without taking on the distinct challenges of aggregate analysis. One partial exception involves
the recent literature on banking contagion effects, which has been spurred by recurrent global
financial crises. Modeling contagion effects necessarily requires models with multiple banks. In
most of the heterodox and orthodox work on contagion, multiple banks affect one another
through linkages that involve either asymmetric information or perceived uncertainty.
2.1. Keynes’ ideas about banking

Abstracting from linkages that work through information and confidence channels, however, banks and bank strategies are linked through the very structure of credit creation. Keynes himself noted this connection.

Keynes never wrote an extended tract on banking. Nonetheless, his works over the years are littered with occasional comments and analyses of banks’ behavior. One of his later papers contains the comment that banks hold the key position in the shift of the economic system from a lower to a higher level of economic activity (Keynes, 1973). This point had not been developed much in the *General Theory* (GT). The GT presented a schema for understanding the extent of economic activity at any point in time, using a comparative static approach. The GT appreciated the impact of real time and uncertainty on decision-making, but paid little attention to the dynamics of movement through time. Discussions of financial issues in the GT thus focus on the links between the liquidity role of money, investment decisions, and uncertainty.

What Keynes meant by his relatively cryptic post-GT comment is perhaps revealed in a passage in the *Treatise on Money* concerning banks’ financing of investment activity. There, Keynes wrote that banks’ volume of reserves largely depends on other banks’ finance policies – that is, on the growth rate of other banks’ loans. Consequently, an individual bank can grow much faster than other banks only if it increases its market share of total banking-sector deposits. But this bank’s rapid-growth strategy will, at the same time, reduce its reserves and strengthen other banks’ lending capacity by providing them with more available funds (free reserves). As Keynes (1960, p. 26-7) stated:

> There can be no doubt that, in the most convenient use of language, all deposits are ‘created’ by the bank holding them. It is certainly not the case that the banks are limited to that depositors should come on their own initiative bringing cash or checks. But it is equally clear that the rate at which an individual bank creates deposits on its own initiative is subject to certain rules and limitations; it must keep step with the other banks and cannot raise its own deposits relatively to the total deposits out of proportion to its quota of the banking business of the country. Finally, the ‘pace’ common to all the member banks is governed by the aggregate of their reserve resources.

This analytical point finds an echo in Keynes’ famous comment that ‘bankers would rather hang together than hang separately.’ These interrelated points were registered well before the GT was
written; and in any case, Keynes’ post-GT comment about the role of banks in determining the level of economic activity does not refer back to them explicitly.

2.2. Post Keynesian ideas about banking

The problem of banking behavior and its impact on economic outcomes has received substantial attention among Post Keynesian economists. Two lines of thought have predominated: one concerns banks’ role in business cycles, the other banks’ role in money endogeneity.\(^3\)

The Post Keynesian approach to banking and financial intermediation in business-cycle fluctuations views the banking system as a channel through which agents’ perceptions of risks, and hence business-cycle fluctuations, both influence and are strongly influenced by non-probabilistic uncertainty. Current data influence the forecasts and confidence of bank and non-bank firms concerning returns from investment. In a monetary economy, even the best forecasts of the future provide agents with no degree of certainty about what decisions (made in advance of outcomes) will best reflect their preferences. Incorporating more data will improve forecast algorithms but not make them less uncertain; the data needed to make agents forecasts more certain in an absolute sense simply do not exist.

Different perspectives over banks’ role in an economy operating under uncertainty have emerged. In the theory of money endogeneity as developed by Moore (1988), Lavoie (1992), and Arestis and Howells (1996), banks accommodate the demand for credit by the non-financial corporate and household sectors. As long as central bank policy is expansionary, banks’ role is to serve as a reliable transmission mechanism for other sectors’ consumption and investment spending. In an approach developed by Dymski (1988), Wray (1990), and Kregel (1997), based more explicitly on Minsky (1982), banks in uncertain environments seek to base their behavior on conventions rooted in their histories with their customers and also on the average behavior of other banks. So if the banking system as a whole is expanding credit, most individual banks will follow this course of action. Under uncertainty, this is the safe way to compete with other banks, since it guarantees both market-share and institutional reputation. Because of this “hang together” mentality, banks’ behavior tends to amplify the scale of economic upswings and downturns. Banks face liquidity shocks and adverse conditions in their borrowing markets, and thus react to the same liquidity pressures as do other economic units. In this approach, the state of the interbank and borrowed-funds markets is crucial in determining banks’ role in expanding or contracting credit (and hence in determining the amplitude of cyclical fluctuations).
This debate on the proper characterization of banks – as either reliable transmission mechanisms or as units sometimes constrained by liquidity risk – is unresolved. Under either interpretation, bank behavior has the effect of widening cyclical swings. In the upturn, banks’ accommodative behavior – their willingness to make loans that increase other units’ leverage, combined with their relative unconcern about liquidity risk – is a factor that increases cyclical volatility. Bankers’ optimistic views about the viability of firms’ debt structures, typical of a period of euphoria, leads them to increase their loans in response to firms’ rising credit demand. In the downturn, quite the opposite sequence unfolds.

This literature has paid little attention to how banks’ strategies and banking-system dynamics may affect business cycle dynamics. Minsky’s model and the work of Moore and others focuses on representative banks. Neither strategic diversity among banks nor the implications of this diversity aggregate banking system behavior have been introduced. We return to the question of banks’ role in the business cycle in section 4.

3. Are banks’ balance sheets exclusively the result of their own strategic decisions?

In this section we argue that the balance sheet structure of an individual bank is only partially determined by its management’s strategic decisions, because it is also determined by the balance sheets positions of other banks, as first stressed by Keynes (1960). This relationship can be explicitly shown by a stylized disaggregation of the variables that enter into the simple money multiplier. Our micro/macro approach to banking system analysis closely follows methods pioneered in Karmel and Wallace (1962). Those authors also develop a simple multi-bank model, in which banks have different liquidity ratios. Karmel and Wallace use this model to explore whether the money multiplier is affected by differential bank liquidity ratios, and whether aggregate cash reserves change with the level of advances. Our analysis shifts attention to the implications of multi-bank interactions for banks’ strategies and financial fragility.

3.1. The multi-bank system approach

This multi-bank system approach shows how an initial increase in the monetary base can generate a bigger increase in the amount of means of payment narrowly defined (that is, M1 = cash + demand deposits). The variables in the money multiplier express the idea that the volume of money depends on the fraction of deposits to M1 that the public wishes to hold, and also on
the loan/reserve ratio that banks desire. Following the conventional approach in this literature, this money multiplier is defined as ζ, where $\zeta = 1/(1-D(1-R))$ – and where consequently, $\Delta M_1 = \zeta \Delta B$ – given that $B = \text{monetary base (cash + reserves)}$; $D = \text{demand deposits}/M_1$; and $R = \text{reserves/demand deposits}$.

For a representative bank that holds only cash and loans as assets, and maintains only deposits as liabilities, the impact of the money multiplier is readily summarized in Table 1:

Table 1. Representative bank balance sheet

<table>
<thead>
<tr>
<th>Δ Assets</th>
<th>Δ Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash: $R \ D \ \zeta \Delta B$</td>
<td>Deposits: $D \ \zeta \Delta B$</td>
</tr>
<tr>
<td>Loans: $(1-R) \ D \ \zeta \Delta B$</td>
<td>Net Worth: $\Delta \ NW = 0$</td>
</tr>
</tbody>
</table>

For our purpose, the key point here is another process, which occurs together with the money expansion and involves the operation of the banking system. The money multiplier’s behavioral coefficients – that is, D and R – not only determine the amount of the increase in M_1 from an initial increase in monetary base (B): they also settle the dimensions of each item of the balance sheet of the representative bank. For example, the amount of cash that a representative bank or the bank system holds is a function of D and R.

Note that the conventional view of the money multiplier, which suggests some automatism in the way that money is created, implicitly admits that the structure of the bank system’s balance sheet changes during the growth process of M_1. This can happen due to an increase in the monetary base or due to a change in the behavioral coefficient. This sort of balance-sheet change is triggered in particular when the rate of growth of money exceeds that of the bank’s net worth. As the banking system begins to make loans, banks’ overall assets begin to grow. Given that net worth is stable in the short run, bank leverage grows as a result of the money multiplier process. Indeed, it is reasonable to expect that net worth will remain stable in the short run, since the financial results of credit operations – such as net interest revenues – will only have an impact on bank profits (and hence net worth) sometime later.

3.2. The disaggregated bank multiplier: the case of different bank strategies
The former section showed how an increase in the monetary base or a change in behavioral coefficients can change the characteristics of banks’ balance sheets. This section points out another factor that can alter banks’ balance sheets: banks’ adoption of different strategies. Here we suppose that each bank, seeking to enhance its prospects for profitability given its own pools of savers and prospective borrowers, sets its own reserve/deposit ratio. Strategic choice here then measures how aggressive each bank is in loan-making, given its deposit base. The more aggressively loans are made, the more risks the bank takes on.

To embody this approach, we take as given that each bank has a different capacity to obtain deposits. That is, each bank has a deposit base, which is distinct from its total deposits. We recognize that in a richer treatment, banks may have strategies regarding deposit retention; so that this given deposit absorption itself becomes endogenous. Here, however, bank strategic interaction is investigated only for the loan market, not for the deposit market. Total deposits include deposits created in the process of loan creation as well as deposits received when the bank accepts reserves from its liability-holders. The bank’s deposit base equals deposits of the latter type – that is, deposits received on the basis of ongoing savings and transaction customer relationships. The bank’s deposit base is linked to its market power: its size depends on the bank’s branch network, its marketing policy, its policies regarding interest rates on loans and deposits, and so on. Then the variables that express the strategies of each individual bank are:

\[R_i \] – reserve policy of bank “i”

\[\Gamma_i \] - deposit attraction of bank “i” (fraction of total deposits \(D \)).

Note that \(\sum \Gamma_i = 1 \), derived from the fact that each bank will absorb \(\Gamma_i \) of total deposits. Each \(\Gamma_i \) is considered a constant.

Here, then, each bank initially establishes its desired reserve/deposit ratio based on how aggressive its strategy is. Supposing net worth is constant, as this ratio falls for any specific bank, that bank increases its leverage and also takes on higher liquidity risk. Note that loan-making involves a reduction of reserves (\(R \)) and hence higher leverage and liquidity risk.

As individual banks make loans and reduce their reserves, the multiplier process begins to run, amplifying total deposits. These increases in demand deposits increase both total liabilities and total assets. The multiplier process also facilitates more loan growth, since loan volume is given
at any point in time by \((1 - R) D \zeta \Delta B\) and since both \(\zeta\) and \((1 - R)\) are growing. For the individual bank involved in this process, its capacity to absorb any adverse shocks falls as this process proceeds and, at the same time, its exposure to liquidity risk rises.

The multiplier \((\zeta)\) does not change with the introduction of the individual-bank variables. Suppose, for example, there is an exogenous increase in the monetary base, \(\Delta B\). Each bank will then receive an initial increment in deposits of \(\Gamma_i D \Delta B\). Total deposits in the first round of the multiplier will then be \(D \Delta B \Sigma \Gamma_i\) (or \(D \Delta B\), as \(\Sigma \Gamma_i = 1\)). The next step will include new loans \((1 - R_i) \Gamma_i D \Delta B\) for each bank; total loans for all banks will be \(D \Delta B \Sigma (1 - R_i \Gamma_i)\). So, new deposits, \(\Gamma_i D^2 \Delta B \Sigma (1 - R_i)\), will be credited to bank \(i\) in the next round, and so on.

Taking the entire multiplier process into account, the money multiplier is \(M_i = \frac{1}{1 - \frac{D(\Sigma (1-R_i))}{\Gamma_i}}\), a disaggregated version of the conventional aggregate multiplier, \(\zeta = \frac{1}{1 - \frac{D (1-R)}{\Gamma}}\). The disaggregated multiplier \(M_i\) highlights the fact that the general reserve fraction is an average of the reserve fraction established by each bank firm, taking into account the relative marginal ability of each bank to attract deposits, \(\Gamma_i\).

Table 2. Balance sheet of bank “i” at the end of the multiplier process

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Cash: } R_i \Gamma_i D \Delta B \Sigma D^2 (1 - (\Sigma R_i \Gamma_i))^2)</td>
<td>(\text{Deposits: } \Gamma_i D \Delta B \Sigma D^2 (1 - (\Sigma R_i \Gamma_i))^2)</td>
</tr>
<tr>
<td>(\text{Loans: } (1 - R_i) \Gamma_i D \Delta B \Sigma D^2 (1 - (\Sigma R_i \Gamma_i))^2)</td>
<td>(\text{or } (1 - R_i) \Gamma_i D \Delta B \Sigma)</td>
</tr>
<tr>
<td>(\text{or } \Gamma_i D \Delta B \Sigma)</td>
<td>(\text{Net Worth: } \Delta NW_i)</td>
</tr>
</tbody>
</table>

This disaggregated approach to the money multiplier shows clearly that the balance sheet of each bank is affected by the strategies adopted by the other ones -- the point stressed by Keynes (1930). Table 2 shows the balance sheet of bank \(i\) at the end of the multiplier process. The balance sheet of bank “\(i\)” will be a function of the public preference’s for deposits \((D)\), of the ability of bank “\(i\)” to attract deposits \((\Gamma_i)\), and of other banks’ reserve/deposit ratios.

3.3 A simulation of a change in bank behavior
It is common in Post Keynesian studies of bank behavior to conceptualize banks that change their portfolios in search of perceived profit opportunities. This approach views banks as active firms, which manage their liabilities – they lend before receiving deposits when they decide to accommodate the demand for credit. Banks in this position plan to obtain reserves through borrowing, if needed, to meet their financial commitments. So at least during some time periods, banks manage imbalances between reserves and deposits. What are the limits for this kind of action?

To illustrate the consequences of liability-managing behavior, we suppose that a bank “k” increase its loans in an amount \(E \). We also suppose that other banks do not change their \(R_i \). So, part of the loans will be deposited in each bank, in an amount \(D \cdot \Gamma_i \cdot M(E) \). At the end of the multiplier process, the bank k will have a balance sheet as described in Table 3:

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash: (R_k \cdot D \cdot \Gamma_k \cdot M(E) - (E - \Gamma_k \cdot M(E)))</td>
<td>Deposits: (D \cdot \Gamma_k \cdot M(E))</td>
</tr>
<tr>
<td>Loans: ((1 - R_k) \cdot D \cdot \Gamma_k \cdot M(E) + E)</td>
<td>NW_k</td>
</tr>
</tbody>
</table>

In making its loan, bank k loses reserves \((E - \Gamma_k \cdot M(E))\) to other banks. For the banking system as a whole, this loan-making expands the means of payment at the expense of bank k’s reserves. From this point, bank k’s reserves begin to grow in proportion to the increase of money that it initiated. At the end of the process, the reserve variation will be \((R_k \cdot D \cdot \Gamma_k - 1) \cdot E\). Since \(0 < R_i < 1 \), \(0 < D < 1 \) and \(0 < \Gamma_k < 1 \), the changes in reserves will be negative, but not as great in magnitude as -1. Consequently, if bank k expands its loans while other banks do not, it will lose reserves to the remaining ones, though less than the total amount it first lent.

Conversely, the other banks gain the reserves that bank k loses. Suppose that the remaining banks do not change their \(R_i \)’s and that the \(\Gamma_i \)’s are constant; in this case, other banks’ financial structures still change due to the growth in their leverage. As Table 4 shows, bank “i” loans will raise by the effect of the increase in bank k loans \((E)\). And, since by assumption \(NW_i \) does not change, both leverage of loans and leverage of assets will grow.
3.4. Financial fragility and the interaction between banks’ balance sheets

As Minsky (1982) pointed out, financial fragility can be understood as a measure of the resistance of the bank system to shocks. Balance sheet indicators of bank susceptibility to specific shocks have two distinct dimensions: (i) how much a bank can lose in the event of a shock; (ii) how losses originating from shocks will be absorbed. In this connection, two indicators connected to this paper’s themes are suggested. The first is an index of liquidity, defined as the ratio of reserves plus securities to deposits. The second is an index of solvency, that is, bank leverage.

The liquidity index shows how much money a bank has to cover withdrawals from the public or from other banks during check clearing. The formula used here is:

\[V_1 = \frac{\text{reserves} + \text{securities}}{\text{deposits}} \]

This leverage formula indirectly shows how losses could be covered by bank net worth. When a bank’s leverage ratio is high, given the value of Ri, its likelihood of problems with bad loans is higher, for any given proportion of bad loans to total loans.

\[V_2 = \frac{\text{loans}}{\text{net worth}} \]

We introduce now the accounts in absolute value terms in the bank balance sheet, foregoing the approach emphasizing variations in each account, which have been shown to this point. In this representation, the bank balance sheet has the following structure:

Table 5. Representative bank balance sheet

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash (C)</td>
<td>Deposits (D)</td>
</tr>
<tr>
<td>Securities (T)</td>
<td>Interbank and borrowed funds (AFL)</td>
</tr>
<tr>
<td>Loans (E)</td>
<td>Net worth (NW)</td>
</tr>
</tbody>
</table>
In Table 6, the two indexes (V₁ and V₂) are shown for two stylized banks, i and k, with different expansion strategies. This depiction is sufficient to capture the effects of strategic variability in the banking system as a whole. Table 6 shows the results of a comparative statics exercise. The balance-sheet situation of the banks is shown at three points in time: (1) before the initial expansion of monetary base; (2) after the expansion of monetary base; and (3) after bank k autonomously increase its loans in an amount E.

Table 6. Bank fragility indexes of bank “i” and bank “k”

<table>
<thead>
<tr>
<th>Fragility Index</th>
<th>Moments</th>
<th>Bank i</th>
<th>Bank k</th>
<th>Bank i</th>
<th>Bank k</th>
<th>Bank i</th>
<th>Bank k</th>
</tr>
</thead>
<tbody>
<tr>
<td>V₁</td>
<td>(C_i + T_i)/D_i</td>
<td></td>
<td></td>
<td>(C_k + T_k)/D_k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V₂</td>
<td>E_i/NW_i</td>
<td></td>
<td></td>
<td>E_k/NW_k</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first moment, the starting point of the exercise, shows the autonomous behavioral strategy adopted by each bank. The V₁ and V₂ of banks i and k are not shown as explicit functions of another banks’ influence, since they consider the effects of neither monetary-base expansion nor changes in bank strategies.

The second moment shows exactly how the expansion of monetary base modifies the liquidity index and leverage for both banks. Loans are expanded on the basis of each bank’s R and Γ; it is assumed here that securities (T) and net worth (NW) do not change. Changes in V₁ depend on the magnitude T as part of total liquid assets (C + T). Concerning V₂, as assets grow, the risk of insolvency increases, as the index of leverage shows. 9

The third moment evaluates the impact of a one-time increase in loans E by bank k. This action by bank k increases its exposure more than that of bank i. Bank k ends up with lower V₁ and higher V₂ than the rest of the banking system, represented here by bank i. In other words, both the liquidity and solvency risk of bank k increases. Also note that while bank i remains more...
conservative than bank k, the impact of bank k’s aggressive loan-making is to make it too more leveraged than before, despite its passive strategy of credit expansion.

One can conclude from this analysis that:

(1) The banking system balance sheet is affected by the multiplier expansion of money, since its net worth does not change in the same way as does the monetary base. So the conventional multiplier supposes, implicitly, that banks become more fragile (and accept this change in their status) during the monetary expansion as the risks of liquidity and insolvency increase.

(2) The balance sheet of the individual bank and the risks that each bank face depend partially of other banks' portfolio decisions. This result does not derive from banks’ refinancing of outstanding defaults (the ratio of bad loans to total loans), but from banks’ own process of money creation.

(3) If banks have different rhythms of loan expansion, then ceteris paribus, more aggressive banks will lose reserves to other banks, and at the same time will take on more liquidity and insolvency risks. In other words, more aggressive banks will be more financially fragile than other banks, a factor that might impose limits on such banks’ loan growth.

(4) However, the reason that one or more banks carry any liquidity or solvency risks is because doing so can be profitable, since more credit expansion can generate greater returns, ceteris paribus. In other words, the search for greater profit for each bank requires that overall liquidity is minimized.

3.5 A numerical simulation of a change in the credit strategy of bank “k”

The multi-bank system approach developed in the former section can be exemplified with a simulation. Let us consider a bank system with only two groups of banks, denominated as bank i and bank k, in a multi-bank system where the banks have differing liquidity-ratios, and where aggregate cash reserves change with the level of advances. As Table 7 denotes, both banks initially have the same figures in their balance sheets.\(^\text{10}\)
A key aspect of this simulation involves movements of reserves between banks, and evolving levels of loans and deposits. In this simulation, when any bank increases loans, any incremental deposits created thereby will be shared among the two banks according to their rates of deposit absorption. Let us assume that the deposit absorption of the two groups of banks are autonomously determined and equal to 0.5. It means that each bank has an equal share of any new deposit created or destroyed in the banking system.

The financial policies of the two groups of banks are summarized by their reserve (that is, reserve-to-deposit) ratios. These ratios are equal to 0.5 at the starting point of the simulation. The reserve ratio is the sum of required reserve ratio (0.3 of demand deposits), in cash, with voluntary ratio (0.2 of demand deposits), held as securities. It is assumed that since a bank has more reserves than are required, some reserves will be used to purchase securities. In the case that a bank has fewer reserves than required it will sell securities.

By exploring the interactions among loans, leverage, assets and reserves, the simulation shows how the two groups of banks and the whole bank system will behave if bank k changes its financial policy -- that is, its reserve-to-deposit ratio -- while bank i maintain the same reserve ratio (0.5). The basic idea is that bank k changes its reserve ratio according to its credit policy. As bank k seeks to increase its loans, it reduces its reserves. Furthermore, the simulation
assumes the following systemic parameters concerning the preferences of the public: cash/M1 = 0.2 and DD/M1 = 0.8.

Figure 1 shows what happen to banks loans as bank k shifts its reserve ratio. If the reserve ratio increases (as it does along the horizontal dimension of Figure 1), the loans of the two groups of banks grow due to the increase in the money multiplier. However, loans of bank k will grow faster than loans of bank i, increasing bank k’s loan-market share. Conversely, if bank k reduces the reserve ratio, the loans of both banks decreases, with bank k loans diminishing more than those of bank i.

![Figure 1. Loans of banks k and i for different reserve-to-deposit ratios of bank k](image)

This first result illustrates that even if the financial policy of bank i does not change, its loans will grow. Of course, there are other possibilities not explored in this simulation. For example, if bank i maintained a constant volume of loans, the reserve ratio of bank i would increase; its assets would grow as the bank increased the volume of securities in its portfolio.

Figure 2 shows that banks’ exposure to credit risk will vary with their loan volume. As bank k increases its reserve-to-deposit ratio, the loan-related leverage of both banks grows – though bank k’s leverage increases more than bank i’s. Conversely, if bank k’s reserve ratio falls, both banks’ leverage will decrease, but that of bank k will decrease more. In other words, although both banks increase their insolvency risk (V2) when bank k decreases its reserve ratio, insolvency risk is bigger for bank k than for bank i.
Figure 3 shows that shifts in bank k’s reserve ratio lead to changes in total banking-sector assets. As bank k’s reserve ratio decreases, the assets of both banks increases in the same rhythm, due to increasing loan volume. This result follows because, by assumption, both banks have the same rate of deposit absorption; if deposit absorption rates differed, so would banks’ asset growth rates. This simulation also shows that the banking sector’s total assets change with a change in any bank’s finance policy. Even banks that maintain a fixed reserve ratio (bank “i,” here) experience an increase in assets. This result conforms with the simple multiplier model.

Of course, bank i is not compelled to expand or reduce its loans as an automatic response to expansions or reductions in bank k’s loan volume. Suppose instead that bank i maintains a constant loan volume. In this event, when bank k increases its loan volume, bank i will increase its reserve-to-deposit ratio, weakening the monetary multiplier effect. But at the same time, bank i will experience an increase in its assets (just equal the growth in its reserve volume) due to bank k’s loan-volume expansion.

The increase (or reduction) in bank k’s reserve ratio causes a transfer of reserves between banks. If bank k’s reserve ratio diminishes because it is increasing loan volume, these reserves are released to the public and to banks (here, bank i) that have not changed their reserve ratios. This situation pushes bank k to borrow money in the market for reserves, in the interbank market, and
from the central bank. In this case, bank k will have to sell securities (and/or issue new securities) obtain needed new reserves.

So, bank k’s reducing its reserve ratio increases the banking system’s exposure to liquidity risk (by generating more demand deposits with total reserves constant); and the liquidity risk of the aggressive bank k increases pari passu as it increases its loans and loses reserves (Figure 4). Conversely, when bank k’s reserve ratio increases, reserves elsewhere in the banking system (as well as those held by the public) are absorbed by bank k; so this bank’s exposure to liquidity risk diminishes.

The previous paragraph has an important consequence regarding the determination of banking-system liquidity risk. The monetary multiplier suggests that expanding the average reserve ratio diminishes M1. So, if the public’s preference for cash/M1 is constant, the public demand for cash also declines. The reserves of the banking system as a whole increase as well. This guarantees a natural defense against bank runs. Alternatively, the reduction of the reserve ratio increases M1. So, if the cash/M1 is maintained constant, the public demand for cash increases (Figure 5). As a result, banking system – as a whole - will be more exposed to liquidity risk, ceteris paribus.
In sum, this simulation highlights the fact that individual banks’ balance sheets are hardly the result of these banks’ choices. The behavior of the set of all banks – of aggregate bank behavior -- is an essential element in determining the size and composition of bank balance sheets.
3.5 Some further developments of the multi-bank system approach

The simple simulation of the former section assumed that in the process of credit expansion, the deposits created by any bank as it expands advances will be shared with other banks. According to their market shares, the other banks will gain cash reserves lost by the expanding bank. We also assumed that banks determine their portfolio allocation in the light of their own liquidity position, without speculating about their competitors’ actions.

Richer bank interaction possibilities can of course arise. Suppose first that other banks expand credit when bank “k” does. This sets up a ‘feedback’ process, wherein the more aggressive bank will regain some of the cash it initially lost. Each bank, in constructing its contingent strategy, may anticipate this development. That is, bank “i” (which is initially in balance) could expand credit simultaneously with bank “k” if both bankers decide to increase their lending so as to meet firms’ credit demand; this situation, typical of a period of euphoria, can arise when both lenders have optimistic views about the viability of firms’ debt structure. In such situations, a banker may prudently assume that changes in the liquidity of the other banks with their resultant increases in credit will, in terms of their impact upon her own cash reserves, approximately offset one another. Wallace and Karmel (1962, p. 100) considered this possibility; they observe that “a banker’s reactions to changes in liquidity will be largely determined by the number of competing banks and the share of his bank in the total banking business, the degree of collaboration (explicit or tacit) between the bankers and the assumptions the banker makes about the likely impact of his own cash reserves of his competitors’ actions.”

Another possibility is that a bank may adopt an expansionary credit strategy as a means of attempting to increase its share of the deposit market. As noted in section 3.2, bank strategy encompasses its deposit as well as its loan market; and loan growth can be one path to deposit growth. Suppose the expansionary bank (bank k) expects to gain more deposits than other banks when it adopts a more aggressive strategy. The basis of this expectation is the expanding banks’ anticipation that it can disproportionately retain the deposits it creates via either requirements (minimum-balance requirements) or incentives (discounts for future borrowing). This possible increase in bank “k”’s deposit absorption is especially likely during an upturn in the business cycle, when the demand for credit increases. This possibility will give bank k more impetus to adopt an expansionary strategy, the more loan growth bank k undertakes, the more its possible deposit-market gains.
It is quite likely that in this case, other banks may follow the leader bank. That is, bank “i” may expand its own loan volume as a way of protecting its deposit base; in effect, this may insure that bank “i” minimizes the number of unsatisfied borrowers that are ripe for bank “k”’s picking. In this circumstance, bank “i” may choose to increase its leverage and widen its asset-liability gap as part and parcel of a strategy of defending deposit-market share. Driven by the actions of aggressive competitors, more conservative bankers may in effect increase their own liquidity and insolvency risks, whose consequences they still fear, because they do not want to lose their share of the market11.

In sum, many possibilities related to banking strategies, which have to do with the reaction of the (different) banks to intra-sectoral behavioral shifts, can be analytically exploited. Perhaps in early stages of the business cycle, such sophisticated calculations of how banker’s rivals actions are likely affect her own cash reserves are not made; in that short run, a bank may simply consider as ‘given’ the distribution of the deposit-market share between banks. But as an expansion proceeds and competition heats up, banks may begin to actively investigate the feedback effects and competitive reactions to their own strategic initiatives.

4. Banking strategy and the business cycle: insights from the simulation model

The approach developed here can help to clarify how bank behavior affects business-cycle dynamics. This section explores aspects of the multi-bank system during the four phases of the business cycle often portrayed by Hyman Minsky: stagnation, upturn, downturn and crisis.

According to the financial fragility hypothesis (Minsky, 1982, 1986), the dynamic of economic growth induces firms to become increasingly indebted to expand their investment. In this connection, cyclical fluctuations result from the way that firms finance their asset positions: increasing macroeconomic financial fragility in the upturn, for example, is associated with an increase in the number of speculative units. The decision to invest (alternatively, to take an asset position) runs hand-in-hand with the choice of the means of financing. Taken together, these decisions define the economy’s vulnerability to adverse changes in the economic situation. An economy will be more or less fragile in the aggregate according to the preponderance of hedge or speculative units. As Dymski and Pollin (1992, p.40) state: “Minsky argues that there is an
inherent tendency for capitalist financial structures to move from states of robustness to fragility over time. This is due to the shift in expectations that occurs over the course of a business cycle, and the way this shift is transmitted through the financial system.”

Cyclical fluctuations are then affected and even triggered by the influence of current data on bank and non-bank firms’ states of expectations and confidence regarding future returns from investment projects. As we have already stressed, banks’ strategic behavior amplifies economic growth during the cyclical upturn; and it also amplifies the downturn, due to banks’ increasing liquidity preference as their expectations about the future – as well as their borrowers’ expectations -- become pessimistic.¹²

4.1. Stagnation

At the trough of the business cycle, when uncertainty about the future undercuts confidence, current information is dominated by the bankruptcies of indebted firms, while banks (like their borrowers) must contend with delays in contractual payments. Realized profits and profit expectations are still low. Indebtedness is viewed as extremely risky because economic agents still perceive a high degree of uncertainty. Since agents’ expectations have deteriorated, the aggregate demand for credit is low. Healthy firms try to adopt a hedge posture: that is, safety margins between profits and financial commitments are sufficient to ensure that, in all future periods, profits will exceed interest expense and amortization payments.¹³

Under these conditions, what would happen if the growth rate of an individual bank’s loans were to increase faster than the average growth rate of other banks? In this phase of the business cycle, an individual bank (bank k) that increases its loans faster than others (bank i) would lose reserves, assuming no change in its market share of deposits (measured by Γ₁). As a result,, this bank’s liquidity risk (V₁) would increase; and since bank k’s expansion of loans increases its degree of leverage, its insolvency risk (V₂) would also increase. Given the low demand for credit and borrowers’ own caution, the expansion-minded bank cannot maintain an aggressive policy by making longer-term loans; it must instead work with borrowers who are interested in accepting its credit offer only for a very short period, and who may require the bank to reduce the interest rate it receives on loans. But such concessions on loan pricing will be yet another source of enhanced liquidity and credit risk for a bank with an aggressive loan-making policy.
These systemic implications of rapid loan expansion in a stagnant economy would certainly reinforce the convention instructing banks to be cautious: and adopting a more conservative strategy will tilt this bank’s asset portfolio toward short term and more liquid assets. In effect, a high liquidity preference is likely to prevail in banking strategy due to the structural penalties for behaving otherwise.

4.2. Upturn

The beginning of the boom depends crucially on improved expectations about the economy’s future prospects by non-bank and bank agents. As agents’ state of confidence improves, overall perceptions of risks decline. Increasing profits and capacity utilization stimulate new investment. As a result, the demand for credit increases. Firms tend to move from a hedge to a speculative posture, reducing their margins of safety in meeting financing commitments.

In the case of banks, improving expectations lead to shifts in liquidity preference, from a more to a less conservative and defensive posture; consequently, banks adopt a more accommodative posture in supplying credit. Bankers react to non-bank firms’ own optimistic views regarding the viability of these firms’ debt structures, increasing loans in order to respond to these firms’ heightened credit demand. The banks’ search for more profits in the upturn can induce them to adopt a more speculative posture: a bank may not only seek the larger monetary returns associated with riskier assets, but also increase its loan leverage and offer their customers special guarantees. The increase in the degree of leverage leads banks to seek new ways to borrow funds so that they can respond rapidly to an increase in the demand for credit and take advantage of opportunities for profit during periods of greater business optimism. Thus, as a result of the strategy of expanding their portfolios, banks boost their leverage, thereby increasing the use of external funds to acquire assets.

In this context, what happens to the balance sheet of an individual bank that increases the growth rate of its loans faster than the average loan growth rate? As section 3 has shown, the level of reserves at this bank (k) declines and its liquidity risk increases. Bank k can sustain an aggressive finance policy only at the risk of increasing raise its liquidity risk \(V_1\) and insolvency risk \(V_2\), that is, heightening its own financial fragility. Further, as section 3 has illustrated, the rest of the banking sector (bank i) too becomes more fragile (though less than bank k’s increased...
fragility): its leverage increases as its balance sheet growth rate is quickened due to its being pulled along by bank k’s faster pace of credit expansion. This simulation model illustrates the synergistic interaction between individual banks’ strategic choices and the conventional behavior of the banking system: *individual banks with especially aggressive growth strategies can influence the average growth rate of the entire banking sector; and individual banks don’t have their own distinct strategies, but which follow the average loan growth rate of the banking sector as a whole, are pulled along when the sectoral growth rate changes.*

So if the banking system as a whole is expanding credit, any individual bank will expand in the same direction – unless it makes a strategic choice to be contrarian. Under uncertainty, gearing a bank’s expansion strategy to the trend in the banking sector is safer, since this guarantee both the bank’s market share and its institutional reputation. This analytical situation illustrates precisely Keynes’ comment about bankers “hanging together.”

4.3. Downturn

The collapse of asset values that occurs during the downturn leads to a collapse of investment. Such a collapse will lead to a shortfall in the profit flows generated by capital assets, which in turn makes the fulfillment of business financial commitments more difficult, if not impossible. Many reliable payers become bad borrowers: falling profits force some hedge and speculative units to become Ponzi units, as cash flows needed to validate financing arrangements are often not forthcoming. Non-bank firms’ declining profits and increasing financial commitments reduce their safety margins. Banks consequently reevaluate borrowers’ risks upward, and incorporate these expectations into loan risk premia, leading to higher loan rates. These higher rates increase firms’ borrowing costs just when refinancing is most needed. Banks refuse to roll over firm debts whenever possible: credit rationing tightens and bad loans grow rapidly.

So the shocks that trigger cyclical downturns lead banks to revise their expectations just as their state of confidence is shaken. Financial institutions’ liquidity preference increases, and leads them to reduce average loan terms, to maintain more surplus reserves, and to purchase assets with high liquidity, such as government securities.
Our simulation experiment suggests that *ceteris paribus*, the overall decrease in loan volume results in deposit losses for all banks. This moderates the rising liquidity risk of the banking sector (which involves both higher open-market borrowing costs and the threat of a run on deposits). Bank k, which has a more stable asset target than banks as a whole (bank i), and which is slower to change, will take on a disproportionate share of bad loans and of the adjustment problems associated with the downturn. It will face problems related to heightened liquidity risk (V1), to declining reserves, and to credit risk problems because of a rising volume of bad loans. Again, the strategic commitment of bank k to a stable asset target pulls other banks into taking on more bad loans than they otherwise would, and toward increasing liquidity and credit risk. As a consequence, as all banks tend to contract their credit supply, the volume of bad loans in the banking system increases, causing a deterioration in the quality of overall bank credit portfolios.

4.4. Crisis

A crisis involves shocks that an economy cannot absorb. So one element in a crisis is the magnitude of any shock. A second element is the situation of firms: for example, how large are firms’ margins of safety relative to the prospective shock; and how many speculative and Ponzi finance units are there in the economy’s financial structure? As safety margins decline and more units become Ponzi, the range of interest-rate increases that can trigger crisis rises. Once the structure of financial payments obligations is punctured, a spiral of decline among investment, profits and asset prices can readily result.

Whether a fully-fledged financial crisis takes place when a sizeable shock occurs depends upon the efficacy of central bank lender-of-last-resort behavior, and on whether gross profit flows are sustained by countercyclical government expenditure. The question of countercyclical policy and its continuing effectiveness is beyond the scope of this paper. Regarding central-bank intervention, several points can be made. The central bank can stabilize asset prices (and block the debt deflation spiral) by increasing the volume and types of eligible assets that it can buy from banks, and also by increasing the volume of financial assistance to banks. This impedes debt deflation by limiting the liquidity and default risks that banks face and checking any impulse toward panic.
The disaggregated multiplier model suggests another way of understanding how the central bank works: it maintains macroeconomic conditions that allow banks to make needed adjustments without experiencing bankruptcies. The central bank can operate like bank k during the downturn – that is, it can expand loans even when the bank system as a whole (bank i) reduces the pace of its loan growth. In effect, the central bank increases its loan volume (its liquidity assistance), increases its purchases of securities (via open market and rediscount operations) and injects reserves into the banking system. Thus, expansionary central bank policy generates more liquid balance sheets for banks, and provides more liquid assets for loans – as bank i does – without generating a bank crisis.

Central bank action of this type, if undertaken successfully, can permit banks to make balance-sheet adjustment without more critical macroeconomic side effects. Individual banks’ profitability will fall; but the important thing is that the central bank puts the banking system into ‘stand-by’ mode, waiting for signals of better prospects before expanding loans again.

5. Summary and conclusions

In recent years, many economists and management theorists have used the tools of microeconomic analysis and organization theory to explore the strategic approaches and options of firms (Besanko et al. 2003) and even nation-states (Porter 1989). This literature has paid virtually no attention to the influence of the macroeconomic level on firm strategy; and vice versa: the implicit assertion is that if a firm or nation ‘gets the microeconomics right,’ good macroeconomic (aggregate) outcomes will follow. This apparently undercuts a central proposition in Keynesian economics: aggregate (macroeconomic) relations are central in shaping economic outcomes. But systematic inattention to micro-macro linkages is inappropriate, especially for firms whose market shares are sizable. This paper has used a simple multi-bank approach to show one example of how microeconomic strategies and aggregate conditions may be complexly intertwined.

This paper has tried to clarify the relationship between individual-bank and banking industry behavior in credit expansion. In our analysis, the balance sheet structure of an individual bank is only partially determined by its strategic choices; it is also determined by the balance sheet positions – and indeed, strategic choices -- of other banks. By disaggregating the variables that enter into the simple money multiplier, we have shown that when banks have different rhythm
of loan expansion, the more aggressive banks will lose reserves to other banks and will generate higher liquidity and insolvency risks for the system as a whole.

The sort of experiment done here – involving the somewhat tedious demonstration that a behavioral shift somewhere in the banking system can change the parameters of the overall system – is of course familiar from classroom exercises with the simple multiplier model. But what has perhaps not been evident in such exercises is that behavioral shifts anywhere in the banking system, if they are of sufficient scale, affect not only banking-system asset volumes, but also the liquidity and insolvency risks borne by every bank within the banking system. Any bank that wants to preserve unchanged its liquidity and insolvency risks must, in effect, actively manage its own portfolio – with further systemic consequences.

The paper also used the multi-bank framework developed here to explore the role of banking in the business cycle. It showed that banks have an important and contradictory role in the business cycle: banks’ accommodative behavior can amplify economic growth during the upturn of a cycle; banks’ contractionary loan-market behavior, due to rising liquidity preference, can also worsen the cyclical downturn.

Much more research remains to be done on shifts in banking strategy as they affect the riskiness and economic role of the banking system as a whole. It is especially important to investigate whether the model of banking strategy suggested here pertain only to an earlier time, when strategic options were more one-dimensional: does this model remain relevant for the present era, in which banks’ strategies are more diverse and banks’ geographic market bases are in flux?

Bibliography

Annex 1. Changes in some banking variables (bank k and i) for different reserve-to-deposit ratios

<table>
<thead>
<tr>
<th>Reserve-to-deposit ratios of bank k</th>
<th>Bank k</th>
<th>Bank i</th>
<th>Banking sector</th>
<th>Bank k</th>
<th>Bank i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.70</td>
<td>688.24</td>
<td>688.24</td>
<td>1376.47</td>
<td>481.76</td>
<td>344.12</td>
<td>106.47</td>
<td>244.12</td>
<td>1.06</td>
<td>2.44</td>
<td>6.88</td>
<td>6.88</td>
<td>1476.47</td>
<td>481.76</td>
<td>344.12</td>
<td>1.06</td>
</tr>
<tr>
<td>0.65</td>
<td>706.06</td>
<td>706.06</td>
<td>1412.12</td>
<td>458.94</td>
<td>353.03</td>
<td>147.12</td>
<td>253.03</td>
<td>1.47</td>
<td>2.53</td>
<td>7.06</td>
<td>7.06</td>
<td>1376.47</td>
<td>481.76</td>
<td>344.12</td>
<td>1.06</td>
</tr>
<tr>
<td>0.60</td>
<td>725.00</td>
<td>725.00</td>
<td>1450.00</td>
<td>435.00</td>
<td>362.50</td>
<td>190.00</td>
<td>262.50</td>
<td>1.90</td>
<td>2.63</td>
<td>7.25</td>
<td>7.25</td>
<td>1376.47</td>
<td>481.76</td>
<td>344.12</td>
<td>1.06</td>
</tr>
<tr>
<td>0.55</td>
<td>745.16</td>
<td>745.16</td>
<td>1490.32</td>
<td>409.84</td>
<td>372.58</td>
<td>235.32</td>
<td>272.58</td>
<td>2.35</td>
<td>2.73</td>
<td>7.45</td>
<td>7.45</td>
<td>1376.47</td>
<td>481.76</td>
<td>344.12</td>
<td>1.06</td>
</tr>
<tr>
<td>0.50</td>
<td>766.67</td>
<td>766.67</td>
<td>1533.33</td>
<td>383.33</td>
<td>383.33</td>
<td>263.33</td>
<td>263.33</td>
<td>2.83</td>
<td>2.83</td>
<td>7.67</td>
<td>7.67</td>
<td>1376.47</td>
<td>481.76</td>
<td>344.12</td>
<td>1.06</td>
</tr>
<tr>
<td>0.40</td>
<td>814.29</td>
<td>814.29</td>
<td>1628.57</td>
<td>325.71</td>
<td>407.14</td>
<td>388.57</td>
<td>307.14</td>
<td>3.89</td>
<td>3.07</td>
<td>8.14</td>
<td>8.14</td>
<td>1376.47</td>
<td>481.76</td>
<td>344.12</td>
<td>1.06</td>
</tr>
<tr>
<td>0.30</td>
<td>869.23</td>
<td>869.23</td>
<td>1738.46</td>
<td>260.77</td>
<td>434.62</td>
<td>508.46</td>
<td>334.62</td>
<td>5.08</td>
<td>3.35</td>
<td>8.69</td>
<td>8.69</td>
<td>1376.47</td>
<td>481.76</td>
<td>344.12</td>
<td>1.06</td>
</tr>
<tr>
<td>0.20</td>
<td>933.33</td>
<td>933.33</td>
<td>1866.67</td>
<td>186.67</td>
<td>466.67</td>
<td>646.67</td>
<td>366.67</td>
<td>6.47</td>
<td>3.67</td>
<td>9.33</td>
<td>9.33</td>
<td>1376.47</td>
<td>481.76</td>
<td>344.12</td>
<td>1.06</td>
</tr>
<tr>
<td>0.10</td>
<td>1009.09</td>
<td>1009.09</td>
<td>2018.18</td>
<td>100.91</td>
<td>504.55</td>
<td>808.18</td>
<td>404.55</td>
<td>8.08</td>
<td>4.05</td>
<td>10.09</td>
<td>10.09</td>
<td>1376.47</td>
<td>481.76</td>
<td>344.12</td>
<td>1.06</td>
</tr>
<tr>
<td>0.05</td>
<td>1052.38</td>
<td>1052.38</td>
<td>2104.76</td>
<td>52.62</td>
<td>526.19</td>
<td>899.76</td>
<td>426.19</td>
<td>9.00</td>
<td>4.26</td>
<td>10.52</td>
<td>10.52</td>
<td>1376.47</td>
<td>481.76</td>
<td>344.12</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Source: Authors’ calculation based on Table 2.
Endnotes:

1. Two well-known examples of microfoundational, representative-bank frameworks that are used to draw macroeconomic implications are Stiglitz and Weiss (1981) and Mankiw (1986).

2. Allen and Gale (2000) and Kregel (1998) are representative papers on contagions in banking and financial markets, respectively emphasizing how shifts in asymmetric information and in confidence in the face of uncertainty can lead to financial-market breakdowns.

4. We introduce only the simplest notion of bank strategy here, as this is sufficient for our analytical purposes. In the real world, bank strategic choices extend well beyond the pace of loan growth, and encompass choices regarding branch networks, whether to offer new kinds of financial services, whether to segment loan markets, whether to merge with other banks or non-bank firms, which deposit customers to target, whether to reduce credit risk through securitization, and so on. See Dymski (1999).

5. We are considering as bank reserves not only primary reserves (cash) but also secondary reserves, that is, other liquid assets that can be converted rapidly into cash without significant losses. See for a more precise definition of liquidity, Davidson (1992).

6. The formula for \(M \) results from the summation \((1 + D (1 - \sum R_i \Gamma_i) + D^2 (1 - \sum R_i \Gamma_i)^2 + ... + D^n (1 - \sum R_i \Gamma_i)^n) \); that is, \(1/(1 - D (1 - \sum R_i \Gamma_i)) \).

7. For example, Minsky (1994, p. 156) states: “In contrast to the orthodox quantity theory of money, the financial instability hypothesis takes banking seriously as a profit-seeking activity. Banks seek profits by financing activity; like all entrepreneurs in a capitalist economy, bankers are aware that innovation assures profits. Thus using the term generically for all intermediaries in finance (whether they be brokers or dealers), bankers are merchants of debt who strive to innovate in the assets they acquire and the liabilities they market”.

8. The level of reserves needed depends on the prevailing institutional and regulatory environment. See, in this connection, Keynes (1930) and Goodhart (1979).

9. We maintain here the assumption that net worth is constant in the short run.

10. The data used for this simulation are shown in Appendix 1.

11. According to Kregel (1997, p. 545), “the decision to lend would in this case be based primarily on convention or average opinion (…), which means by reference to the types of projects other banks are financing (…) Thus, over time, bankers will be lending to borrowers they previously would have refused (or would have lent only at higher margins of safety), and they will be concentrating lending to projects in particular areas simply because everyone else is doing so.”

12. The liquidity preference approach explains banks’ balance-sheet strategies as due more fundamentally to perceptions of risks and profit opportunities than to choices over individual liabilities: “For a given state of expectations, bank’s liquidity preference will determine the desired profile of the assets they purchase and their prices, that is, the rate of returns each type of asset must offer to compensate for their degree of illiquidity”. (Carvalho, 1999, p. 132) Also see Paula and Alves Jr (2003, section 2).

13. Minsky’s core terminology for characterizing economic units is described in his texts cited here. Briefly, a hedge unit has a positive safety margin because under any interest-rate and revenue scenarios, its cash-flow is sufficient to meet its debt obligations. A speculative unit, in this terminology, is one whose anticipated cash-flow is sufficient to meet its debt obligations (but which may be insufficient in some states of the world). Ponzi units’ anticipated cash-flows are insufficient to cover their outstanding debt obligations. Units can be Ponzi due to an unrelenting (and even irrational) tendency to gamble, or due to the collapse of cash flows; their indebtedness grows even when interest rates do not rise.

14. We might note that the shocks in question can originate with a severe tightening of monetary policy by the central bank (that is, with ‘shock therapy’) in response to inflationary pressures. In this event, the central bank appears analytically both as the cause of and the solution to the moment of crisis.